Prezentace řešení v přírodě. Využití prezentace „Voda“ v hodinách chemie. Řešení. Praktická aplikace řešení


Podobné dokumenty

    Pojem "oxidy" v chemii, jejich klasifikace (pevné, kapalné, plynné). Druhy oxidů v závislosti na chemických vlastnostech: solnotvorné, nesolnotvorné. Typické reakce bazických a kyselých oxidů: tvorba soli, alkálie, vody, kyseliny.

    prezentace, přidáno 28.06.2015

    Van't Hoffovy reakční rovnice. Kapalné, plynné a pevné roztoky. Studium mechanismů rozpouštění látek. Průnik molekul látky do dutiny a interakce s rozpouštědlem. Body tuhnutí a varu. Stanovení molekulové hmotnosti.

    prezentace, přidáno 29.09.2013

    Vlastnosti roztoků elektrolytů, podstata procesu tvorby roztoku. Vliv povahy látek a teploty na rozpustnost. Elektrolytická disociace kyselin, zásad, solí. Výměnné reakce v roztocích elektrolytů a podmínky jejich vzniku.

    abstrakt, přidáno 03.09.2013

    Agregátní skupenství látek: krystalické, sklovité a kapalné krystaly. Vícesložkové a disperzní systémy. Řešení, druhy a způsoby vyjádření jejich koncentrace. Změny Gibbsovy energie, entalpie a entropie při tvorbě roztoku.

    abstrakt, přidáno 13.02.2015

    Pojem infuzních roztoků, jejich povinné vlastnosti. Klasifikace infuzních roztoků a jejich účel. Vlastnosti koloidních roztoků, indikace pro jejich použití. Dextranová řešení, vlastnosti jejich použití a také možné komplikace.

    prezentace, přidáno 23.10.2014

    Podstata roztoků jako homogenního vícesložkového systému skládajícího se z rozpouštědla, rozpuštěných látek a produktů jejich interakce. Proces jejich klasifikace a hlavní způsoby vyjádření kompozice. Pojem rozpustnost, krystalizace a var.

    abstrakt, přidáno 01.11.2014

    Bezpečnostní pravidla při práci v chemické laboratoři. Pojem chemického ekvivalentu. Metody vyjadřování složení roztoků. Zákon a faktor ekvivalence. Příprava roztoků s daným hmotnostním zlomkem z koncentrovanějšího.

    vývoj lekce, přidáno 12.9.2012

    Studium vlivu plynné růstové atmosféry na parametry pevných roztoků. Stanovení závislosti rychlosti růstu epitaxních vrstev (SiC)1-x(AlN)x na parciálním tlaku dusíku v systému. Složení heteroepitaxních struktur tuhého roztoku.

    článek, přidáno 11.2.2018

    Koncept rozptýleného systému a skutečného řešení. Termodynamika procesu rozpouštění. Fyzikální vlastnosti neelektrolytových roztoků, jejich koligativní vlastnosti. Charakteristika prvního Raoultova zákona a Ostwaldova zřeďovacího zákona pro slabé elektrolyty.

    prezentace, přidáno 27.04.2013

    Získání dovedností při přípravě roztoků ze suché soli. Použití Mohrových pipet. Použití byret, odměrných válců a kádinek při titracích. Stanovení hustoty koncentrovaného roztoku pomocí hustoměru. Výpočet hmotnosti chloridu sodného.

Řešení

Roztok je homogenní, vícesložkový
systém variabilního složení obsahující
produkty interakce komponent –
solváty (pro vodné roztoky - hydráty).
Homogenní znamená homogenní, jednofázový.
Vizuální indikace homogenity kapalin
řešení je jejich transparentnost.

Řešení se skládají minimálně ze dvou
složky: rozpouštědlo a rozpustné
látek.
Rozpouštědlo je složkou
jehož množství v roztoku je obvykle
převládá nebo tato složka agreguje
jehož stav se nemění kdy
vytvoření roztoku.
Voda
Kapalina

Soluta je
složka odebraná v nedostatku, popř
komponenta, jejíž stav agregace
se mění, když se tvoří roztok.
Pevné soli
Kapalina

Komponenty řešení si zachovávají své
jedinečné vlastnosti a nevstupujte do
chemické reakce mezi sebou
tvorba nových sloučenin,
.
ALE
rozpouštědlo a solut, tvořící
řešení interagují. Proces
interakce mezi rozpouštědlem a solutem
látky se nazývá solvace (pokud
Rozpouštědlem je voda - hydratace).
V důsledku chemické interakce
solut s rozpouštědlem
se tvoří více či méně stabilní
komplexy charakteristické pouze pro řešení,
které se nazývají solváty (nebo hydráty).

Jádro solvátu je tvořeno molekulou, atomem popř
rozpuštěný iont, skořápka –
molekuly rozpouštědla.

Bude několik roztoků stejné látky
obsahují solváty s různým počtem molekul
rozpouštědlo ve skořápce. Záleží na množství
rozpuštěná látka a rozpouštědlo: jsou-li rozpuštěny
tam je málo látky a hodně rozpouštědla, pak má solvát
nasycený solvatační obal; pokud se rozpustí
je tam hodně látky – řídká skořápka.
Variabilita ve složení roztoků téhož
látky se obvykle projevují rozdíly v jejich koncentraci
Nekoncentrovaný
řešení
Koncentrovaný
řešení

Solváty (hydráty) vznikají v důsledku
donor-akceptor, iont-dipól
interakcí nebo vlivem vodíku
spojení.
Ionty jsou obzvláště náchylné k hydrataci (např
nabité částice).
Mnohé ze solvátů (hydrátů) jsou
křehké a snadno rozložitelné. Nicméně, v
V některých případech silný
sloučeniny, ze kterých lze izolovat
roztok pouze ve formě krystalů,
obsahující molekuly vody, tzn. tak jako
krystal hydratuje.

Rozpouštění jako fyzikální a chemický proces

Proces rozpouštění (inherentně fyzikální proces
drcení látky) v důsledku tvorby solvátů
(hydráty) mohou být doprovázeny následujícími jevy
(charakteristika chemických procesů):
vstřebávání
změna
nebo generování tepla;
objem (v důsledku vzniku
Vodíkové vazby);

zvýraznění
plyn nebo sedimentace (v důsledku
vyskytující se hydrolýza);
změna barvy roztoku vzhledem k barvě
rozpuštěná látka (v důsledku tvorby
vodní komplexy) atd.
čerstvě připravený roztok
(smaragdová barva)
řešení po nějaké době
(šedo-modro-zelená barva)
Tyto jevy nám umožňují připsat proces rozpouštění
složitý, fyzikální a chemický proces.

Klasifikace řešení

1. Podle stavu agregace:
- kapalina;
- tvrdé (mnoho kovových slitin,
sklenka).

2. Podle množství rozpuštěné látky:
- nenasycené roztoky: rozpuštěné v nich
méně látky, než se může rozpustit
toto rozpouštědlo za normálních okolností
podmínky (25◦C); mezi ně patří většina
lékařská a domácí řešení. .

- nasycené roztoky jsou roztoky, ve kterých
ve kterých je tolik rozpuštěné látky,
kolik se může daný rozpustit?
rozpouštědlo za normálních podmínek.
Známka nasycení roztoku
je jejich neschopnost se rozpustit
do nich zavedeno dodatečné množství
rozpustná látka.
Mezi taková řešení patří:
vody moří a oceánů,
lidská tekutina
tělo.

- přesycené roztoky jsou roztoky, ve kterých
ve kterých je více solut než
může rozpouštět při
normální podmínky. Příklady:
sycené nápoje, cukrový sirup.

Vznikají přesycené roztoky
pouze v extrémních podmínkách: když
vysoká teplota (cukrový sirup) popř
vysoký krevní tlak (sycené nápoje).

Přesycené roztoky jsou nestabilní a
po návratu do normálních podmínek
„stárne“, tj. delaminovat. Přebytek
rozpuštěná látka krystalizuje nebo
uvolňuje jako bubliny plynu
(vrátí se k původnímu agregátu
Stát).

3. Podle typu vytvořených solvátů:
-iontové roztoky - solut
se rozpouští na ionty.
-Taková řešení se tvoří za podmínek
polarita rozpuštěné látky a
rozpouštědlo a jeho přebytek.

Iontové roztoky jsou poměrně odolné vůči
delaminace a jsou také schopny vodivosti
elektrický proud (jsou vodiče
elektrický proud druhého druhu)

- molekulární roztoky – rozpustné
látka se rozkládá pouze na molekuly.
Taková řešení se tvoří za následujících podmínek:
- nesoulad polarity
solut a rozpouštědlo
nebo
- polarita rozpuštěné látky a
rozpouštědlo, ale nedostatečné
poslední.
Molekulární roztoky jsou méně stabilní
a nejsou schopny vést elektrický proud

Schéma struktury molekulárního solvátu na
Příklad rozpustného proteinu:

Faktory ovlivňující proces rozpouštění

1. Chemická podstata látky.
Přímý vliv na proces
rozpouštění látek je ovlivněno jejich polaritou
molekul, který je popsán pravidlem podobnosti:
podobné se rozpouští v podobné.
Tedy látky s polárními molekulami
dobře se rozpouští v polárních
rozpouštědel a špatně v nepolárních a
naopak.

2. Teplota.
Pro většinu kapalin a pevných látek
vyznačující se zvýšením rozpustnosti s
Zvýšení teploty.
Rozpustnost plynů v kapalinách s
klesá s rostoucí teplotou a s
zmenšit - zvýšit.

3. Tlak. S rostoucím tlakem
rozpustnost plynů v kapalinách
zvyšuje a s poklesem -
klesá.
O rozpustnosti kapalných a pevných látek
látek, změny tlaku neovlivňují.

Metody vyjadřování koncentrace roztoků

Existují různé způsoby
vyjadřující složení roztoku. Nejčastěji
se používají jako hmotnostní zlomek
solut, molární a
hmotnostní koncentrace.

Hmotnostní zlomek rozpuštěné látky

Jedná se o bezrozměrnou veličinu rovnající se poměru
hmotnost rozpuštěné látky k celkové hmotnosti
řešení:
% hmotn. =
mlátky
m řešení
100%
Například 3% alkoholový roztok jódu
obsahuje 3 g jódu na 100 g roztoku nebo 3 g jódu na 97 g
alkohol

Molární koncentrace

Ukazuje, kolik molů rozpuštěných
látky obsažené v 1 litru roztoku:
SM =
nlátky
VM
řešení
=
mlátky
VLátky '
řešení
Látka - molární hmotnost rozpuštěného
látky (g/mol).
Jednotkou měření této koncentrace je
je mol/l (M).
Například 1M roztok H2SO4 je roztok
obsahující 1 mol (nebo 98 g) síry v 1 litru

Hromadná koncentrace

Označuje hmotnost nacházející se látky
v jednom litru roztoku:
C=
látek
V řešení
Jednotka měření – g/l.
Tato metoda se často používá k hodnocení složení
přírodní a minerální vody.

Teorie
elektrolytický
disociace

ED je proces rozkladu elektrolytu na ionty
(nabité částice) vlivem polár
rozpouštědlo (voda) za vzniku roztoků,
schopné vést elektrický proud.
Elektrolyty jsou látky, které mohou
rozpadat se na ionty.

Elektrolytická disociace

Je způsobena elektrolytická disociace
interakce polárních molekul rozpouštědla s
částice rozpuštěné látky. Tento
interakce vede k polarizaci vazeb, in
což má za následek tvorbu iontů v důsledku
„oslabení“ a rozbití vazeb v molekulách
rozpustná látka. Přechod iontů do roztoku
doprovázené jejich hydratací:

Elektrolytická disociace

Kvantitativně je ED charakterizována stupněm
disociace (a); vyjadřuje postoj
disociované molekuly na ionty
celkový počet molekul rozpuštěných v roztoku
(změní se z 0 na 1,0 nebo z 0 na 100 %):
n
a = ´100 %
N
n – molekuly disociované na ionty,
N je celkový počet rozpuštěných molekul
řešení.

Elektrolytická disociace

Povaha iontů vzniklých během disociace
elektrolyty – různé.
V molekulách soli se po disociaci tvoří
kationty kovů a anionty zbytků kyselin:
Na2SO4 ↔ 2Na+ + SO42 Kyseliny disociují za vzniku H+ iontů:
HNO3 ↔ H+ + NO3 Báze disociují za vzniku OH- iontů:
KOH ↔ K++ + OH-

Elektrolytická disociace

Podle stupně disociace mohou být všechny látky
rozdělena do 4 skupin:
1. Silné elektrolyty (α>30 %):
alkálie
(zásady vysoce rozpustné ve vodě
kovy skupiny IA – NaOH, KOH);
jednosložkový
kyseliny a kyselina sírová (HCl, HBr, HI,
HN03, HC104, H2S04 (zředěný));
Všechno
ve vodě rozpustné soli.

Elektrolytická disociace

2. Průměrné elektrolyty (3 %<α≤30%):
kyseliny
– H3PO4, H2SO3, HNO2;
dibazický,
vodou ředitelné základy -
Mg(OH)2;
rozpustný
soli přechodných kovů ve vodě,
vstup do procesu hydrolýzy rozpouštědlem –
CdCl2, Zn(N03)2;
sůl
organické kyseliny – CH3COONa.

Elektrolytická disociace

3. Slabé elektrolyty (0,3 %<α≤3%):
nižší
organické kyseliny (CH3COOH,
C2H5COOH);
nějaký
ve vodě rozpustný anorganický
kyseliny (H2CO3, H2S, HCN, H3BO3);
téměř
všechny soli a zásady, které jsou málo rozpustné ve vodě
(Ca3(P04)2, Cu(OH)2, Al(OH)3);
hydroxid
voda.
amonium – NH4OH;

Elektrolytická disociace

4. Neelektrolyty (α≤0,3 %):
nerozpustný
většina
ve vodě jsou soli, kyseliny a zásady;
organické sloučeniny (např
rozpustné a nerozpustné ve vodě)

Elektrolytická disociace

Stejná látka může být silná,
a slabý elektrolyt.
Například chlorid lithný a jodid sodný, které mají
iontová krystalová mřížka:
po rozpuštění ve vodě se chovají jako typické
silné elektrolyty,
když se rozpustí v acetonu nebo kyselině octové
jsou slabé elektrolyty se stupněm
disociace je menší než jednota;
v „suché“ formě působí jako neelektrolyty.

Iontový produkt vody

Voda, i když je slabým elektrolytem, ​​částečně disociuje:
H2O + H2O ↔ H3O+ + OH− (správný, vědecký zápis)
nebo
H2O ↔ H+ + OH− (krátká notace)
Ve zcela čisté vodě je koncentrace iontů při okolních podmínkách vždy konstantní
a rovná se:
IP = x = 10-14 mol/l
Protože v čisté vodě = , pak = = 10-7 mol/l
Takže iontový produkt vody (IP) je produktem koncentrací
vodíkové ionty H+ a hydroxylové ionty OH− ve vodě.

Iontový produkt vody

Když se jakákoliv látka rozpustí ve vodě
látek rovnost koncentrací iontů
= = 10-7 mol/l
může být porušeno.
Proto iontový produkt vody
umožňuje určit koncentrace a
jakékoli řešení (tj. určit
kyselost nebo zásaditost prostředí).

Iontový produkt vody

Pro snadnou prezentaci výsledků
využívá se kyselost/zásaditost prostředí
nikoli absolutní hodnoty koncentrace, ale
jejich logaritmy – vodík (pH) a
hydroxylové (pOH) indikátory:
+
pH = - log[H]
-
pOH = - log

Iontový produkt vody

V neutrálním prostředí = = 10-7 mol/l a:
pH = - log(10-7) = 7
Při přidávání kyseliny (H+ iontů) do vody,
koncentrace OH− iontů klesne. Proto, když
pH< lg(< 10-7) < 7
prostředí bude kyselé;
Při přidávání alkálií (OH− iontů) do vody, koncentrace
bude více než 10-7 mol/l:
-7
pH > log(> 10) > 7
a prostředí bude zásadité.

Indikátor vodíku. Ukazatele

Pro stanovení pH se používají acidobazické testy.
indikátory jsou látky, které mění barvu, když
v závislosti na koncentraci H + a OH- iontů.
Jedním z nejznámějších ukazatelů je
univerzální indikátor, barevný když
přebytek H+ (tedy v kyselém prostředí) zčervená, když
přebytek OH- (t.j. v alkalickém prostředí) - modrá a
mající žlutozelenou barvu v neutrálním prostředí:

Hydrolýza solí

Slovo "hydrolýza" doslova znamená "rozklad"
voda."
Hydrolýza je proces interakce iontů
solut s molekulami vody s
tvorba slabých elektrolytů.
Protože se slabé elektrolyty uvolňují jako
plyny, srážejí se nebo existují v roztoku
nedisociovanou formou, pak může být hydrolýza
zvážit chemickou reakci rozpuštěné látky
s vodou.

1. Usnadnit psaní rovnic hydrolýzy
všechny látky jsou rozděleny do 2 skupin:
elektrolyty (silné elektrolyty);
neelektrolyty (střední a slabé elektrolyty a
neelektrolyty).
2. Kyseliny a
zásad, jelikož produkty jejich hydrolýzy nejsou
se liší od původního složení roztoků:
Na-OH + H-OH = Na-OH + H-OH
H-NO3 + H-OH = H-NO3 + H-OH

Hydrolýza solí. Pravidla psaní

3. Stanovit úplnost hydrolýzy a pH
řešení, napište 3 rovnice:
1) molekulární - všechny látky jsou přítomny v
ve formě molekul;
2) iontové – všechny látky schopné disociace
psaný v iontové formě; ve stejné rovnici
volné identické ionty jsou obvykle vyloučeny
levá a pravá strana rovnice;
3) konečný (nebo výsledný) – obsahuje
výsledek „redukcí“ předchozí rovnice.

Hydrolýza solí

1. Hydrolýza soli vzniklé silným
zásada a silná kyselina:
Na+Cl- + H+OH- ↔ Na+OH- + H+ClNa+ + Cl- + H+OH- ↔ Na+ + OH- + H+ + ClH+OH- ↔ OH- + H+
Nedochází k hydrolýze, médium roztoku je neutrální (od
koncentrace OH- a H+ iontů je stejná).

Hydrolýza solí

2. Hydrolýza soli tvořené silnou bází a
slabá kyselina:
C17H35COO-Na+ + H+OH- ↔ Na+OH- + C17H35COO-H+
C17H35COO- + Na+ + H+OH- ↔ Na+ + OH- + C17H35COO-H+
C17H35COO- + H+OH- ↔ OH- + C17H35COO-H+
Částečná hydrolýza aniontovým, alkalickým roztokem

ACH-).

Hydrolýza solí

3. Hydrolýza soli tvořené slabou bází a
silná kyselina:
Sn+2Cl2- + 2H+OH- ↔ Sn+2(OH-)2 ↓+ 2H+ClSn+2 + 2Cl- + 2H+OH- ↔ Sn+2(OH-)2 + 2H+ + 2ClSn+2 + 2H +OH- ↔ Sn+2(OH-)2 + 2H+
Částečná hydrolýza, podle kationtu je médium roztoku kyselé
(protože přebytek iontů zůstává v roztoku ve volné formě
H+).

Hydrolýza solí

4. Hydrolýza soli tvořené slabou bází a slabou
kyselina:
Pokusme se získat sůl octanu hlinitého výměnnou reakcí:
3CH3COOH + AICI3 = (CH3COO)3Al + 3HCl
Ovšem v tabulce rozpustnosti látek ve vodě např
není tam žádná látka. Proč? Protože vstupuje do procesu
hydrolýza vodou obsaženou v původních roztocích
CH3COOH a AICI3.
(CH3COO)-3Al+3+ 3H+OH- = Al+3(OH-)3 ↓+ 3CH3COO-H+
3CH3COO-+ Al+3 + 3H+OH- = Al+3(OH-)3 ↓+ 3CH3COO-H+
Hydrolýza je úplná, nevratná, je určeno prostředí roztoku
elektrolytická pevnost produktů hydrolýzy.

Náhled:

Chcete-li používat náhledy prezentací, vytvořte si účet Google a přihlaste se k němu: https://accounts.google.com


Popisky snímků:

Vyvinula: učitelka biologie nejvyšší kategorie Natalya Rafikovna Pavlenko, 2014. Městská rozpočtová vzdělávací instituce „Střední škola č. 4“, Shchekino, Tula Region Water-solvent. Dílo vody v přírodě. hodina přírodopisu v 5. třídě

Cíle: Vzdělávací: seznámit studenty s vlastnostmi vody jako rozpouštědla, naučit připravovat roztok soli ve vodě a suspenzi křídy ve vodě, rozvíjet znalosti o tvůrčí a destruktivní práci vody v přírodě. Vývojové: rozvoj mentálních operací analýzy a syntézy, rozvoj kognitivní činnosti prostřednictvím práce s knihou a tabulkami, učení se vyvozovat závěry; rozvoj tvořivých schopností, rozvoj řeči. Vzdělávací: vštěpování vlastenectví (pomocí regionální složky), rozvoj ekologické kultury mezi školáky, která neumožňuje poškozování přírody znečišťováním vodních ploch.

Téma lekce: Voda je rozpouštědlo. Dílo vody v přírodě.

6 skupin žáků třídy provedlo průzkum vody

Geografové (studovali složení vod Světového oceánu) Oceánská voda je univerzální, homogenní ionizovaný roztok, který obsahuje 75 chemických prvků. Jsou to pevné minerální látky (soli), plyny, ale i suspenze organického a anorganického původu.

Mladí přírodovědci (studovali destilovanou vodu) Destilovaná voda se získává destilací ve speciálních přístrojích - destilátorech. Dokonce i vyčištěná voda obsahuje malé částice nečistot a cizích inkluzí.

Chemici (studovali vlastnosti pitné vody v Shchekino) V oblasti Tula je železo přirozenou součástí podzemních vod. Koncentrace železa se navíc zvyšuje, když ocelové a litinové vodovodní potrubí koroduje.

Ekologové (studovali „stříbrnou vodu“) Voda nalitá do stříbrných nádob se po dlouhou dobu neznehodnocuje. Obsahuje ionty stříbra, které mají škodlivý vliv na bakterie ve vodě.

Biologové (studovali obsah vody v lidském těle a rostlinách)

Odborníci na výživu (studovali minerální vodu Krainska na obsah solí a oxidu uhličitého)

Závěr: V přírodě není čistá voda.

Laboratorní práce č. 4 „Příprava roztoku soli a suspenze křídy ve vodě.“ Cíle: naučit se připravovat roztok a suspenzi, naučit se pracovat s laboratorním vybavením. Vybavení: tác, 2 hrnky vody, dóza č. 1 se solí, dóza č. 2 s křídou. Postup: 1. Posuňte zásobník s reagenciemi směrem k sobě. 2. Vezměte sklenici vody a sklenici č. 1. Lžící naberte sůl. Sůl nasypte do sklenice vody a promíchejte lžící. co pozoruješ? Co se stalo se solí? 3. Vezměte druhou sklenici vody a sklenici č. 2. Naberte křídu lžící. Nalijte ji do sklenice vody a promíchejte lžící. Co se stalo s křídou? co pozoruješ? 4. Porovnejte výsledky pokusů se solí a křídou. Jak se liší řešení od suspenze? co je řešení? Závěr:

Závěr: Roztok je kapalina obsahující cizorodé látky, které jsou v něm rovnoměrně rozmístěny.

Tvůrčí práce vody Voda je domovem organismů

Tvůrčí práce vody Voda je zdrojem energie

Kreativní práce vodní Dopravní cesty

Tvůrčí práce vody Tvorba úrodného bahna

Kreativní práce vody při klíčení semen

Destruktivní práce vodních jeskyní

Ničivé dílo vody Povodně

Destruktivní práce vody tsunami

Ničivé dílo vody Vznik roklí

Závěr: Práce vody v přírodě může být kreativní a destruktivní.

Doplňte tabulku (s využitím textu učebnicového odstavce) Tvořivé dílo vody Destruktivní dílo vody

Domácí úkol S. 23 Napište krátkou esej na téma: „Význam vody v přírodě a lidském životě“.

Děkuji za pozornost!

Seznam použité literatury: Pakulova V.M., Ivanova N.V. "Přírodní historie. Příroda. Nežijící a žijící" M.: "Bustard" 2013. Ikher T. P., Shishirina N. E., Tararina L.F. „Ekologický monitoring objektů vodního prostředí“ Metodická příručka pro učitele, studenty a školáky., Tula: TOEBTSu, nakladatelství „Grif a Kº“, 2003. Mazur V.S. "Ekologie okresu Shchekinsky regionu Tula", Shchekino 1997


Chcete-li používat náhledy prezentací, vytvořte si účet Google a přihlaste se k němu: https://accounts.google.com


Popisky snímků:

Téma: VODA je rozpouštědlo. Látky rozpustné a nerozpustné ve vodě. . Poznání světa

Cíle: 1. zlepšit znalosti o vodě a jejím významu; 2. pomocí pokusů ukázat, které látky se rozpouštějí a nerozpouštějí; 3. vyvodit závěr o významu vody pro živou přírodu; 4. zlepšit dovednosti studentů v analýze a shrnutí získaných znalostí; 5. pěstovat úctu k vodě. 6. Schopnost spolupracovat; Účel: Představit vlastnost vody - rozpustnost;

Hádej hádanku VODA Jsem mrak, a mlha, A potok, a oceán, A já létám, a běžím, A můžu být sklo! VODA

Vlastnosti vody 1. Průhledná 2. Bezbarvá 3. Bez zápachu 4. Voda teče. (vlastnost - tekutost) 5. Bez formy

Voda v přírodě může být ve třech skupenstvích Kapalina Pevná Plynná voda řek, oceánů, moří déšť rosa kroupy led sníh mráz pára

Písek Cukr Jílová Sůl

Jsme zvyklí, že voda je vždy naším společníkem. Bez toho se nemůžeme umýt, nemůžeme jíst, nemůžeme se opít. Troufám si vám oznámit, že bez ní nemůžeme žít. Role vody v přírodě

Lidé, šetřete vodou!


K tématu: metodologický vývoj, prezentace a poznámky

Voda. metody stanovení složení vody v přírodě, způsoby jejího čištění.

Rozvoj hodiny chemie v 8. ročníku pro žáky studující podle programu Rudzitis G.E., Feldman F.G. Materiál lekce zahrnuje prvky studentských výzkumných aktivit. do vývojové lekce...

Prezentace obsahuje úvod do tématu lekce, shromážděný zajímavý doplňkový materiál k tématu a test z probrané látky....

Mimoškolní aktivita "Voda. Voda. Voda všude kolem..."

Účel akce: Zvýšit informovanost žáků 8. ročníku o problematice ochrany vody jako nejdůležitějšího přírodního zdroje podpory života člověka. Informace o významu vody, jejím obsahu...