Растворы в природе презентация. Использование на уроках химии презентации «Вода. Растворы. Практическое применение растворов


Подобные документы

    Понятие термина "оксиды" в химии, их классификация (твердые, жидкие, газообразные). Виды оксидов в зависимости от химических свойств: солеобразующие, несолеобразующие. Типичные реакция основных и кислотных оксидов: образование соли, щелочи, воды, кислоты.

    презентация, добавлен 28.06.2015

    Уравнения реакции Вант-Гоффа. Жидкие, газообразные и твердые растворы. Изучение механизмов растворения веществ. Проникновение молекул вещества в полость и взаимодействие с растворителем. Температура замерзания и кипения. Определение молекулярной массы.

    презентация, добавлен 29.09.2013

    Особенности растворов электролитов, сущность процесса образования раствора. Влияние природы веществ и температуры на растворимость. Электролитическая диссоциация кислот, оснований, солей. Реакции обмена в растворах электролитов и условия их протекания.

    реферат, добавлен 09.03.2013

    Агрегатные состояния вещества: кристаллическое, стеклообразное и жидкокристаллическое. Многокомпонентные и дисперсные системы. Растворы, виды и способы выражения их концентрации. Изменение энергии Гиббса, энтальпии и энтропии при образовании раствора.

    реферат, добавлен 13.02.2015

    Понятие инфузионных растворов, их обязательные свойства. Классификация инфузионных растворов и их назначение. Особенности коллоидных растворов, показания к их применению. Растворы декстранов, особенности их использования, а также возможные осложнения.

    презентация, добавлен 23.10.2014

    Сущность растворов как однородной многокомпонентной системы, состоящей из растворителя, растворённых веществ и продуктов их взаимодействия. Процесс их классификации и основные способы выражения состава. Понятие растворимости, кристаллизации и кипения.

    реферат, добавлен 11.01.2014

    Правила техники безопасности при работе в химической лаборатории. Понятие о химическом эквиваленте. Способы выражения состава растворов. Закон и фактор эквивалентности. Приготовление растворов с заданной массовой долей из более концентрированного.

    разработка урока, добавлен 09.12.2012

    Изучение влияния газовой атмосферы роста на параметры твердых растворов. Определение зависимости скорости роста эпитаксиальных слоев (SiC)1-x(AlN)х от парциального давления азота в системе. Состав гетероэпитаксиальных структур твердого раствора.

    статья, добавлен 02.11.2018

    Понятие дисперсной системы и истинного раствора. Термодинамика процесса растворения. Физические свойства растворов неэлектролитов, их коллигативные свойства. Характеристика первого закона Рауля и закона разбавления Оствальда для слабых электролитов.

    презентация, добавлен 27.04.2013

    Приобретение навыков приготовления растворов из сухой соли. Использование пипеток Мора. Применение бюреток, мерных цилиндров и мензурок при титровании. Определение плотности концентрированного раствора с помощью ареометра. Расчёт навески хлорида натрия.

Растворы

Раствор – это гомогенная, многокомпонентная
система переменного состава, содержащая
продукты взаимодействия компонентов –
сольваты (для водных растворов - гидраты).
Гомогенная – значит, однородная, однофазная.
Визуальным признаком гомогенности жидких
растворов является их прозрачность.

Растворы состоят как минимум из двух
компонентов: растворителя и растворяемого
вещества.
Растворитель – это тот компонент,
количество которого в растворе, как правило,
преобладает, или тот компонент, агрегатное
состояние которого не изменяется при
образовании раствора.
Вода
Жидкие

Растворенным веществом является
компонент, взятый в недостатке, или
компонент, агрегатное состояние которого
изменяется при образовании раствора.
Твердые соли
Жидкие

Компоненты растворов сохраняют свои
уникальные свойства и не вступают в
химические реакции между собой с
образованием новых соединений,
.
НО
растворитель и растворённое вещество, образуя
растворы, взаимодействуют. Процесс
взаимодействия растворителя и растворённого
вещества называется сольватацией (если
растворителем является вода – гидратацией).
В результате химического взаимодействия
растворенного вещества с растворителем
образуются более или менее устойчивые
комплексы, характерные только для растворов,
которые называют сольватами (или гидратами).

Ядро сольвата образует молекула, атом или
ион растворенного вещества, оболочку –
молекулы растворителя.

Несколько растворов одного и того же вещества будут
содержать сольваты с переменным количеством молекул
растворителя в оболочке. Это зависит от количества
растворенного вещества и растворителя: если растворенного
вещества мало, а растворителя много, то сольват имеет
насыщенную сольватную оболочку; если растворенного
вещества много – разреженную оболочку.
Переменность состава растворов одного и того же
вещества принято показывать различиями в их концентрации
Неконцентрированный
раствор
Концентрированный
раствор

Сольваты (гидраты) образуются за счет
донорно-акцепторного, ион-дипольного
взаимодействия или за счет водородных
связей.
Особенно склонны к гидратации ионы (как
заряженные частицы).
Многие из сольватов (гидратов) являются
непрочными и легко разлагаются. Однако в
ряде случаев образуются прочные
соединения, которые возможно выделить из
раствора только в виде кристаллов,
содержащих молекулы воды, т.е. в виде
кристаллогидратов.

Растворение как физико-химический процесс

Процесс растворения (по своей сути физический процесс
дробления вещества) вследствие образования сольватов
(гидратов) может сопровождаться следующими явлениями
(характерными для химических процессов):
поглощением
изменением
или выделением тепла;
объема (в результате образования
водородных связей);

выделением
газа или выпадением осадка (в результате
происходящего гидролиза);
изменением цвета раствора относительно цвета
растворяемого вещества (в результате образования
аквакомплексов) и др.
свежеприготовленный раствор
(изумрудного цвета)
раствор через некоторое время
(серо-сине-зеленого цвета)
Эти явления позволяют отнести процесс растворения к
комплексному, физико-химическому процессу.

Классификации растворов

1. По агрегатному состоянию:
- жидкие;
- твердые (многие сплавы металлов,
стёкла).

2. По количеству растворенного вещества:
- ненасыщенные растворы: в них растворенного
вещества меньше, чем может растворить
данный растворитель при нормальных
условиях (25◦С); к ним относятся большинство
медицинских и бытовых растворов. .

- насыщенные растворы – это растворы, в
которых растворенного вещества столько,
сколько может растворить данный
растворитель при нормальных условиях.
Признаком насыщенности растворов
является их неспособность растворять
дополнительно вводимое в них количество
растворяемого вещества.
К таким растворам относятся:
воды морей и океанов,
жидкости человеческого
организма.

- пересыщенные растворы – это растворы, в
которых растворяемого вещества больше, чем
может растворить растворитель при
нормальных условиях. Примеры:
газированные напитки, сахарный сироп.

Пересыщенные растворы образуются
только в экстремальных условиях: при
высокой температуре (сахарный сироп) или
высоком давлении (газированные напитки).

Пересыщенные растворы неустойчивы и
при возврате к нормальным условиям
«стареют»,т.е. расслаиваются. Избыток
растворенного вещества кристаллизуется или
выделяется в виде пузырьков газа
(возвращается в первоначальное агрегатное
состояние).

3. По типу образуемых сольватов:
-ионные растворы- растворяемое вещество
растворяется до ионов.
-Такие растворы образуются при условии
полярности растворяемого вещества и
растворителя и избыточности последнего.

Ионные растворы достаточно устойчивы к
расслоению, а также способны проводить
электрический ток (являются проводниками
электрического тока II рода)

- молекулярные растворы – растворяемое
вещество распадается только до молекул.
Такие растворы образуются при условии:
- несовпадении полярностей
растворенного вещества и растворителя
или
- полярности растворенного вещества и
растворителя, но недостаточности
последнего.
Молекулярные растворы менее устойчивы
и не способны проводить электрический ток

Схема строения молекулярного сольвата на
примере растворимого белка:

Факторы, влияющие на процесс растворения

1. Химическая природа вещества.
Непосредственное влияние на процесс
растворения веществ оказывает полярность их
молекул, что описывается правилом подобия:
подобное растворяется в подобном.
Поэтому вещества с полярными молекулами
хорошо растворяются в полярных
растворителях и плохо в неполярных и
наоборот.

2. Температура.
Для большинства жидких и твердых веществ
характерно увеличение растворимости при
повышении температуры.
Растворимость газов в жидкостях с
повышением температуры уменьшается, а с
понижением – увеличивается.

3. Давление. С повышением давления
растворимость газов в жидкостях
увеличивается, а с понижением –
уменьшается.
На растворимость жидких и твердых
веществ изменение давления не влияет.

Способы выражения концентрации растворов

Существуют различные способы
выражения состава раствора. Наиболее часто
используются такие, как массовая доля
растворённого вещества, молярная и
массовая концентрация.

Массовая доля растворённого вещества

Это безразмерная величина, равная отношению
массы растворённого вещества к общей массе
раствора:
w% =
mвещества
m раствора
´ 100%
Например, 3%-ный спиртовой раствор йода
содержит 3г йода в 100г раствора или 3г йода в 97г
спирта.

Молярная концентрация

Показывает, сколько моль растворённого
вещества содержится в 1 литре раствора:
СМ =
nвещества

раствора
=
mвещества
Vвещества ´
раствора
Мвещества - молярная масса растворенного
вещества (г/моль).
Единицей измерения данной концентрации
является моль/л (М).
Например, 1М раствор Н2SO4 - это раствор,
содержащий в 1 литре 1 моль (или 98г) серной

Массовая концентрация

Указывает на массу вещества, находящегося
в одном литре раствора:
С=
твещества
V раствора
Единица измерения – г/л.
Данным способом часто оценивают состав
природных и минеральных вод.

Теория
электролитической
диссоциации

ЭД – это процесс распада электролита на ионы
(заряженные частицы) под действием полярного
растворителя (воды) с образованием растворов,
способных проводить электрический ток.
Электролиты – это вещества, способные
распадаться на ионы.

Электролитическая диссоциация

Электролитическая диссоциация вызывается
взаимодействием полярных молекул растворителя с
частицами растворяемого вещества. Это
взаимодействие приводит к поляризации связей, в
результате чего образуются ионы за счет
«ослабления» и разрыва связей в молекулах
растворяемого вещества. Переход ионов в раствор
сопровождается их гидратацией:

Электролитическая диссоциация

Количественно ЭД характеризуется степенью
диссоциации (α); она выражает отношение
продиссоциированных молекул на ионы к
общему числу молекул, растворенных в растворе
(меняется от 0 до 1.0 или от 0 до 100%):
n
a = ´100%
N
n – продиссоциированные на ионы молекулы,
N – общее число молекул, растворенных в
растворе.

Электролитическая диссоциация

Характер ионов, образующихся при диссоциации
электролитов – различен.
В молекулах солей при диссоциации образуются
катионы металла и анионы кислотного остатка:
Na2SO4 ↔ 2Na+ + SO42Кислоты диссоциируют с образованием ионов Н+:
HNO3 ↔ H+ + NO3Основания диссоциируют с образованием ионов ОН-:
KOH ↔ K+ + OH-

Электролитическая диссоциация

По степени диссоциации все вещества можно
разделить на 4 группы:
1. Сильные электролиты (α>30%):
щелочи
(хорошо растворимые в воде основания
металлов IA группы – NaOH, KOH);
одноосновные
кислоты и серная кислота (НСl, HBr, HI,
НNО3, НСlO4, Н2SO4(разб.));
все
растворимые в воде соли.

Электролитическая диссоциация

2. Средние электролиты (3%<α≤30%):
кислоты
– H3PO4, H2SO3, HNO2 ;
двухосновные,
растворимые в воде основания –
Mg(OH)2;
растворимые
в воде соли переходных металлов,
вступающие в процесс гидролиза с растворителем –
CdCl2, Zn(NO3)2;
соли
органических кислот – CH3COONa.

Электролитическая диссоциация

3. Слабые электролиты (0,3%<α≤3%):
низшие
органические кислоты (CH3COOH,
C2H5COOH);
некоторые
растворимые в воде неорганические
кислоты (H2CO3, H2S, HCN, H3BO3);
почти
все малорастворимые в воде соли и основания
(Ca3(PO4)2, Cu(OH)2, Al(OH)3);
гидроксид
вода.
аммония – NH4OH;

Электролитическая диссоциация

4. Неэлектролиты (α≤0,3%):
нерастворимые
большинство
в воде соли, кислоты и основания;
органических соединений (как
растворимых, так и нерастворимых в воде)

Электролитическая диссоциация

Одно и то же вещество может быть как сильным,
так и слабым электролитом.
Например, хлорид лития и иодид натрия, имеющие
ионную кристаллическую решетку:
при растворении в воде ведут себя как типичные
сильные электролиты,
при растворении в ацетоне или уксусной кислоте
являются слабыми электролитами со степенью
диссоциации меньше единицы;
в «сухом» виде выступают неэлектролитами.

Ионное произведение воды

Вода, хотя и является слабым электролитом, частично диссоциирует:
H2O + H2O ↔ H3O+ + OH− (правильная, научная запись)
или
H2O ↔ H+ + OH− (сокращенная запись)
В совершенно чистой воде концентрация ионов при н.у. всегда постоянна
и равна:
ИП = × = 10-14 моль/л
Поскольку в чистой воде = , то = = 10-7 моль/л
Итак, ионное произведение воды (ИП) – это произведение концентраций
ионов водорода Н+ и ионов гидроксила OH− в воде.

Ионное произведение воды

При растворении в воде какого-либо
вещества равенство концентраций ионов
= = 10-7 моль/л
может нарушаться.
Поэтому, ионное произведение воды
позволяет определить концентрации и
любого раствора (то есть определить
кислотность или щелочность среды).

Ионное произведение воды

Для удобства представления результатов
кислотности/щелочности среды пользуются
не абсолютными значениями концентраций, а
их логарифмами – водородным (рН) и
гидрокcильным (pOH) показателями:
+
pH = - lg[ H ]
-
pOH = - lg

Ионное произведение воды

В нейтральной среде = = 10-7 моль/л и:
pH = - lg(10-7) = 7
При добавлении к воде кислоты (ионов H+),
концентрация ионов OH− будет падать. Поэтому, при
pH < lg(< 10-7) < 7
среда будет кислой;
При добавлении к воде щелочи (ионов OH−) концентрация
будет больше 10−7 моль/л:
-7
pH > lg(> 10) > 7
, а среда будет щелочной.

Водородный показатель. Индикаторы

Для определения рН используют кислотно-основные
индикаторы – вещества, меняющие свой цвет в
зависимости от концентрации ионов Н + и ОН-.
Одним из наиболее известных индикаторов является
универсальный индикатор, окрашивающийся при
избытке Н+ (т.е. в кислой среде) в красный цвет, при
избытке ОН- (т.е. в щелочной среде) – в синий и
имеющий в нейтральной среде желто-зеленую окраску:

Гидролиз солей

Слово «гидролиз» буквально означает «разложение
водой».
Гидролиз – это процесс взаимодействия ионов
растворенного вещества с молекулами воды с
образованием слабых электролитов.
Поскольку слабые электролиты выделяются в виде
газа, выпадают в осадок или существуют в растворе в
недиссоциированном виде, то гидролиз можно
считать химической реакцией растворенного вещества
с водой.

1. Для облегчения написания уравнений гидролиза
все вещества делят на 2 группы:
электролиты (сильные электролиты);
неэлектролиты (средние и слабые электролиты и
неэлектролиты).
2. Гидролизу не подвергаются кислоты и
основания, поскольку продукты их гидролиза не
отличаются от исходного состава растворов:
Na-OH + H-OH = Na-OH + H-OH
H-NO3 + H-OH = H-NO3 + H-OH

Гидролиз солей. Правила написания

3. Для определения полноты гидролиза и рН
раствора записывают 3 уравнения:
1) молекулярное – все вещества представлены в
виде молекул;
2) ионное – все вещества, способные к диссоциации
записываются в ионном виде; в этом же уравнении
обычно исключаются свободные одинаковые ионы из
левой и правой частей уравнения;
3) итоговое (или результирующее) – содержит
результат «сокращений» предыдущего уравнения.

Гидролиз солей

1. Гидролиз соли, образованной сильным
основанием и сильной кислотой:
Na+Cl- + H+OH- ↔ Na+OH- + H+ClNa+ + Cl- + H+OH- ↔ Na+ + OH- + H+ + ClH+OH- ↔ OH- + H+
Гидролиз не идет, среда раствора нейтральная (т.к.
концентрация ионов OH- и H+ одинакова).

Гидролиз солей

2. Гидролиз соли, образованной сильным основанием и
слабой кислотой:
C17H35COO-Na+ + H+OH- ↔ Na+OH- + C17H35COO-H+
C17H35COO- + Na+ + H+OH- ↔ Na+ + OH- + C17H35COO-H+
C17H35COO- + H+OH- ↔ OH- + C17H35COO-H+
Гидролиз частичный, по аниону, среда раствора щелочная

OH-).

Гидролиз солей

3. Гидролиз соли, образованной слабым основанием и
сильной кислотой:
Sn+2Cl2- + 2H+OH- ↔ Sn+2(OH-)2 ↓+ 2H+ClSn+2 + 2Cl- + 2H+OH- ↔ Sn+2(OH-)2 + 2H+ + 2ClSn+2 + 2H+OH- ↔ Sn+2(OH-)2 + 2H+
Гидролиз частичный, по катиону, среда раствора кислая
(т.к. в растворе в свободном виде остается избыток ионов
H+).

Гидролиз солей

4. Гидролиз соли, образованной слабым основанием и слабой
кислотой:
Попробуем получить в реакции обмена соль ацетата алюминия:
3CH3COOH + AlCl3 = (CH3COO)3Al + 3HCl
Однако, в таблице растворимости веществ в воде такого
вещества нет. Почему? Потому что оно вступает в процесс
гидролиза с водой, содержащейся в исходных растворах
CH3COOH и AlCl3.
(CH3COO)-3Al+3+ 3H+OH- = Al+3(OH-)3 ↓+ 3CH3COO-H+
3CH3COO-+ Al+3 + 3H+OH- = Al+3(OH-)3 ↓+ 3CH3COO-H+
Гидролиз полный, необратимый, среда раствора определяется
электролитической силой продуктов гидролиза.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Разработала: учитель биологии высшей категории Павленко Наталья Рафиковна 2014г. Муниципальное бюджетное образовательное учреждение «С редняя школа №4 » г. Щекино Тульской области Вода-растворитель. Работа воды в природе. урок природоведения в 5 классе

Цели: Образовательные: познакомить учащихся со свойствами воды как растворителя, научить приготавливать раствор соли в воде и взвесь мела в воде, формирование знаний о созидательной и разрушительной работе воды в природе. Развивающие: развитие мыслительных операций анализа и синтеза, развитие познавательной активности посредством работы с книгой и таблицами, научить делать выводы; развитие творческих способностей, развитие речи. Воспитательные: воспитание патриотизма (путем использования регионального компонента), формирование у школьников экологической культуры, не позволяющей приносить вред природе путем загрязнения водоемов.

Тема урока: Вода-растворитель. Работа воды в природе.

6 групп учащихся класса провели исследования воды

Географы (исследовали состав вод Мирового океана) Океанская вода - универсальный однородный ионизированный раствор, в состав которого входят 75 химических элементов. Это твердые минеральные вещества (соли), газы, а также взвеси органического и неорганического происхождения.

Юные натуралисты (исследовали дистиллированную воду) Дистиллированную воду получают перегонкой в специальных аппаратах - дистилляторах. Даже в ней - очищенной воде содержатся небольшие частички примесей и посторонних включений.

Химики (исследовали свойства питьевой воды в г.Щекино) В Тульской области железо является природным компонентом подземных вод. Кроме того, концентрация железа повышается при коррозии стальных и чугунных водопроводных труб.

Экологи (исследовали «серебряную воду») Вода, налитая в серебряные сосуды долго не портится. В ней содержатся ионы серебра, которые губительно действуют на бактерии, находящиеся в воде.

Биологи (исследовали содержание воды в организме человека и растений)

Диетологи (исследовали минеральную воду «Краинскую» на содержание солей и углекислого газа)

Вывод: Чистой воды в природе нет.

Лабораторная работа № 4 «Приготовление раствора соли и взвеси мела в воде». Цели: научиться приготавливать раствор и взвесь, научиться работать с лабораторным оборудованием. Оборудование: лоток, 2 стаканчика с водой, баночка № 1 с солью, баночка № 2 с мелом. Ход работы: 1.Придвиньте к себе лоток с реактивами. 2.Возьмите стаканчик с водой и баночку № 1. Зачерпните ложечкой соль. Насыпьте соль в стакан с водой и перемешайте ложечкой. Что Вы наблюдаете? Что произошло с солью? 3.Возьмите второй стаканчик с водой и баночку № 2. Зачерпните ложечкой мел. Насыпьте его в стакан с водой, перемешайте ложечкой. Что произошло с мелом? Что Вы наблюдаете? 4. Сравните результаты опытов с солью и мелом. Чем раствор отличается от взвеси? Что такое раствор? Вывод:

Вывод: Раствор - жидкость, содержащая посторонние вещества, которые в ней равномерно распределены.

Созидательная работа воды Вода-среда обитания организмов

Созидательная работа воды Вода- источник энергии

Созидательная работа воды Транспортные пути

Созидательная работа воды Образование плодородного ила

Созидательная работа воды При прорастании семян

Разрушительная работа воды Образование пещер

Разрушительная работа воды Наводнения

Разрушительная работа воды Цунами

Разрушительная работа воды Образование оврагов

Вывод: Работа воды в природе может быть созидательной и разрушительной.

Заполните таблицу (используя текст параграфа учебника) Созидательная работа воды Разрушительная работа воды

Домашнее задание П. 23 Напишите небольшое сочинение на тему: «Значение воды в природе и жизни человека».

Спасибо за внимание!

Список использованной литературы: Пакулова В.М., Иванова Н.В. «Природоведение. Природа. Неживая и живая» М.: «Дрофа» 2013 г. Ихер Т. П., Шиширина Н. Е., Тарарина Л.Ф. «Экологический мониногинг объектов водной среды» Методическое пособие для педагогов, студентов, и школьников., Тула: ТОЭБЦу, изд-во «Гриф и Кº», 2003 г. Мазур В.С. «Экология Щекинского района Тульской области», Щекино 1997


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Тема: ВОДА – растворитель. Растворимые и нерастворимые в воде вещества. . Познание мира

Задачи: 1. совершенствовать знания о воде, о ее значении; 2. показать на опытах, какие вещества растворяются и не растворяются; 3. подвести к выводу о значении воды для живой природы; 4. совершенствовать навыки анализа и обобщения учащимися полученных знаний; 5. воспитание бережного отношения к воде. 6. Умение работать в сотрудничестве; Цель: Познакомить со свойством воды – растворимость;

Отгадай загадку ВОДА Я и туча, и туман, И ручей, и океан, И летаю, и бегу, И стеклянной быть могу! ВОДА

Свойства воды 1. Прозрачна 2. Бесцветна 3. Без запаха 4. Вода течёт. (свойство – текучесть) 5 . Без формы

Вода в природе может находиться в трёх состояниях Жидкое Твёрдое Газообразное вода рек, океанов, морей дождь роса град лёд снег иней пар

Песок Сахар Глина Соль

Мы привыкли, что вода - Наша спутница всегда. Без нее нам не умыться, Не наесться, не напиться. Смею я вам доложить, Без нее нам не прожить. Роль воды в природе

Люди, берегите воду!


По теме: методические разработки, презентации и конспекты

Вода. методы определения состава воды.Вода в природе, способы ее очистки.

Разработка урока химии в 8 классе, для учащихся обучающихся по программе Рудзитиса Г.Е., Фельдмана Ф.Г. материал урока включает элементы исследовательской деятельности учащихся. к уроку разработ...

В презентации сделано введение в тему урока, собран интересный дополнительный материал по теме, тест по изученному материалу....

Внеклассное мероприятие "Вода. Вода. Кругом вода..."

Цель мероприятия: повысить уровень информированности учащихся 8-ых классов в вопросе защиты воды как важнейшего природного источника жизнеобеспечения человека. Информация о значении воды, содержании е...