На чем работают гэс. ГЭС - это что такое? Список крупнейших ГЭС России. Крупнейшие аварии и происшествия


Застройщики сейчас активно популяризируют малые ГЭС, для того, чтобы получить разрешения у местных общин на их постройку. Но экологический вред плотин настолько велик, а производительность гидроэнергетики настолько низкая, что все это похоже скорее на бизнес девяностых. Давайте рассмотрим несколько мифов связанных с малыми гидроэлектростанциями.



Миф 1. Малые ГЭС - помогут достичь энергонезависимости.

Этот миф сформировался на основании изучений гидроэнергетического потенциала малых рек, без учета экологических, социально-экономических, законодательных и других ограничений и рисков, которые влияют на то, какую часть этого потенциала можно использовать без вреда для природы, местных хозяйств, без нарушения законов и международных правовых актов, без учета рисков связанных с гидроэнергетикой в целом.
На самом деле все значительно сложнее.

Если говорить об энергонезависимости целой страны. То в Украине, например, большие и средние ГЭС составляют только 7,88% (9 обьектов) от общего обьема поставляемой энергии. Малые ГЭС составляют всего - 0,16% (80 обьектов).

При чем обьемы производства электроэнергии в Украине намного превышает потребности населения и активно экспортируется. И наращивать эти обьемы в масштабах страны перекрывая все реки малыми греблями и плотинами это по сути вредительство, с целью обогащения.

Миф 2. Малые ГЭС дают дешевую экологически чистую энергию, которая поможет улучшить энергообеспеченность отдаленных общин.

Стоимость электроэнергии малых ГЭС абсолютно неконкурентноспособна по сравнению с другими видами производимой энергии. Даже с учетом «зеленых тарифов», прибыль от малых ГЭС обеспечивается только наличием схем обязательного выкупа производимой энергии.

Это не говоря уже об экологичности самой постройки малых ГЭС, которые, как правило, сопровождаются грубыми нарушения всех экологических норм, игнорированием законов и давлением на местные общины.

Миф 3. Малых ГЭС планируется немного и решения об их постройке касается только некоторых общин.

От инвесторов малых ГЭС очень часто можно услышать, что ни о каких сотнях малых ГЭС речь не идет, ведь нет столько мест для их постройки и все это только планы, которые вряд ли будут когда-то воплощены в жизнь.

На самом деле таких проектов тысячи. И каждый раз местные активисты сталкиваются со случаями, когда органы местного самоуправления тайком от общин выдают разрешения на постройки малых ГЭС застройщикам. И местная община узнает о постройке плотины только когда тяжелая техника заходит в русло реки и начинает разрушать водоемы.

Практически каждая речка с более-менее значительным перепадом высот и минимальным наполнением воды становится жертвой горе-бизнесменов. Преимущество отдается горным частям рек, а также малым рекам.

Причина неочевидна, она определяется кинетической энергией воды. Просто большим перепадом воды можно достигнуть нужного преобразования механической энергии в электрическую, а расходы в постройке малых ГЭС в верховьях рек значительно ниже чем в низовье, где русло всегда шире.

Миф 4. ГЭС не несет угрозы окружающей среде, не будет иметь негативного влияния для населения и общин.

На самом деле ГЭС наносит огромный вред окружающий среде на всех этапах ее существования. Особо опасным является постройка одновременно сотен малых ГЭС без учета их кумулятивного эффекта.

Миф 5. Малая гидроэнергетика - это передовой мировой опыт. Она соответствует самым безопасным для природы мировым образцам.

На самом деле, основным технологиям, которые используются в малых ГЭС уже боле ста лет. А большинство ГЭС построено там, где их вообще не должно быть через экологические ограничения.
Миф 6. Малые ГЭС всегда лучше для окружающей среды, чем большие.

Долгое время считалось, что малые ГЭС намного безопасней чем крупные. Но когда исследователи сравнили потери суходола и прибрежных поселений в расчете на 1МВт произведенной электроэнергии, то оказалось, что потери территорий экосистем от малых ГЭС могут в сотни раз превышать потери от больших ГЭС в расчете на 1МВт.

Также малые ГЭС вызывают большую фрагменитацию экосистем, ухудшают качество воды и влияют на гидрологию рек и их бассейнов.

Миф 7. Малые ГЭС будут защищать от паводков и наводнений.

На самом деле, нормальный режим работы малых ГЭС несовместимый с противопаводковой защитой.

Последние исследования показывают, что лучшей защитой от наводнений и паводков являются не дорогостоящие инженерные сооружения, а естественные речные поймы и снесение всех инженерных сооружений (плотин, дамб и т.д.), которые перекрывают русло реки и сужают пойму, создают помехи свободному ходу водных потоков.

Миф 8. Малые ГЭС не опаснее водяных мельниц

Часто этот факт, преподают как аксиому. Но это далеко не так. Малые ГЭС намного опаснее, чем водяные мельницы. Основные отличия кроются в специфике работы этих сооружений.

Водяные мельницы работают нерегулярно и часто для их запуска достаточно погрузить колесо в воду, без перекрытия реки плотиной. Кроме этого эти плотины были значительно меньше, чем плотины малых ГЭС и при паводках они полностью затапливались не создавая препятствий для миграции рыбы. Кстати, особенности конструкции этих плотин не создавали препятствий для миграции мальков вниз по течению.

Малые ГЭС - капитальные сооружения, которые работают максимальное количество дней в году. Постоянная работа таких дамб приводит к тому, что в период нереста и миграции риб, молодая рыба не способна преодолеть плотину и гибнет в турбинах. А часто в результате работы турбин происходит высушивание русла реки, что приводит к разрушению местной экосистемы.

Миф 9. Малые ГЭС принесут благополучие общинам, сопутствуют развитию туризму и рекреации

На самом деле, малые ГЭС делают невозможным некоторые виды туризма и рекреации, в частности сплавный и зеленый туризм.

Кроме того, все поступления в местный бюджет и выплаты, которые инвесторы обещают местным общинам, это просто подкуп обещаниями. Малые ГЭС создаются только с одной целью, выкачивание компенсаций из госбюджета в частные карманы.

Миф 10. Малые ГЭС уменьшают парниковых газов и препятствуют изменению климата.

Еще одно утверждение, которые построено на неполноте всех собранных аргументов.
Дело в том, что при строительстве ГЭС, как правило создается водохранилище, а в момент его наполнения увеличиваются выбросы другого газа - метана, который имеет парниковый потенциал в 20 раз выше, чем СО2. Это обусловлено процессами разложения органических веществ, например растений, в условиях затопления водохранилища.

Тем более для запуска ГЭС нужна электроэнергия с ТЭС, которая работает на ископаемом топливе. А электроэнергия, вырабатываемая малыми ГЭС выкупается вынуждено и по завышенным тарифам.

Миф 11. Экологи критикуют не предлагая альтернативы.

На самом деле экологи предлагают целый ряд альтернатив, которые позволяют повышать энергетическую безопасность, благополучие местных жителей и сохранять природу.

Одним из самых перспективных направлений является энергосбережение, которое может уменьшить энергии страны в 2 раза уже к 2030 году.

Возможным является развитие бесплотинных ГЭС, которые не забирают русло в трубы, а устанавливаются в потоке. Но для бизнеса они не интересны, так как вырабатывают слишком мало энергии, достаточной только для обеспечения частного домохозяйства.
Их можно устанавливать достаточно много, без вреда для окружающей среды и такие ГЭС способны обеспечивать энергонезависимость небольших отдаленных общин.

Как можно остановить развития гидроэнергетики и прекратить уничтожение окружающей среды

Единственный путь - это просвещение местных общин и защита местных рек во имя нашего общего будущего. От делков из 90-х можно защитится только реальными уверенными действиями на месте.

Кстати эта борьба идет не только у нас. В США (штат Вашингтон) на реке Евла недавно были снесены две плотины высотой 33 и 64 метра, которые 102 года перекрывали реку и миграционные пути рыбы. Это снос, который является крупнейшим сносом плотины по экологическим причинам в истории, произошел благодаря борьбе местных жителей и экологов - защитников рек. реки и рыбы оказались, в конце концов, важнее и для местной общины, и для государства.

21/07/2010

В 1920 году был принят план ГОЭЛРО. Спустя 90 лет после строительства первой советской ГЭС самое время разобраться, нужна ли гидротехника сегодня – во времена инноваций, модернизаций и нанотехнологий? Является ли специальность гидротехника перспективной, или через десяток лет о ней будут говорить со снисходительной улыбкой. Ответы Online812 искал в Санкт-Петербургском государственном политехническом университете – у доктора технических наук, профессора инженерно-строительного факультета (раньше назывался гидротехническим) СПбГПУ Владимира БУХАРЦЕВА.


- Гидротехника - это еще актуально? Это только ГЭС, или ее область гораздо шире?
- Важнейшими отраслями гидротехники являются: гидроэнергетика, инженерные мелиорации, водный транспорт и т.д. Еще - борьба с вредными проявлениями водной стихии, то есть наводнениями и паводками. Эти разделы гидротехники будут востребованы и через 20 лет, и в более далекой перспективе.

- В чем основное преимущество гидроэлектростанций? В том, что воды у нас больше, чем солнца?
- В эффективности и надежности. Во всем российском энергетическом комплексе именно гидроэлектростанции создают резерв регулировочной мощности. А это - ключевой элемент обеспечения системной надежности. Вспомните: когда произошла авария на Саяно-Шушенской ГЭС, регион ни на минуту не оставался без света. Потому что соседние, расположенные на Енисее электростанции тут же восполнили этот провал. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными, способными моментально включить дополнительный энергоблок и существенно увеличить выработку электроэнергии, если будет такая необходимость, если возникнет пиковая нагрузка. Мне кажется, в будущем у нас будут функционировать электростанции двух типов: атомные, которые будут давать основной объем энергии, постоянный, мощный поток, и гидростанции - для дополнительной нагрузки. А может, появятся другие виды энергии, о которых сейчас ничего не известно. Например, водородная, которая сейчас нигде толком не применяется, хотя водород можно получать прямо из воздуха.

- А ветряные и солнечные станции?
- Ветровая и солнечная энергетика составляют около 3 - 5 процентов в общем балансе и составить конкуренцию гидроэнергетике не могут. И потом они ведь требуют отчуждения земель, так что быстро наводнить ими все регионы не получится. Хотя как дополнительный вид энергетики - они могли бы работать очень хорошо, обслуживая один блок - один дом. Например, там, где подвод ЛЭП от основной электростанции слишком затруднен и затратен. Представьте себе маяк в пятистах километрах от ближайшего населенного пункта. Поставить рядом с ним вертушку и генератор - и маяк будет светить сам.

- Геотермальная энергия у нас не применяется?
- Вулканы - нет, а вот гейзеры, которые работают постоянно, способны и отапливать помещения, и даже давать электрический ток. Кажется, на Камчатке есть несколько небольших комплексов, которые используют такого вида энергию.

Говорят, в некоторых южных деревнях люди перекрывают речки, ставят самодельные генераторы и - пожалуйста, имеют собственную гидроэлектростанцию, правда, на общественном русле. Это возможно?
- Здесь даже не нужен самодельный генератор, такие игрушки продаются в магазинах в Европе или Америке. Серьезно к этому относиться, конечно, нельзя… Но если у вас проходит ручей по дачному участку и вы желаете получить альтернативный источник энергии - можете попробовать. Высота «сооружения» между верхним и нижним бьефом должна составлять не меньше двух метров, тогда есть шанс, что турбина будет работать.

- В мире в целом какое отношение к гидроэнергетике?
- По данным на 2005 год, она обеспечивает до 19 процентов всей электроэнергии в мире. Установленная мощность гидроустановок достигает 715 ГВт. В пересчете киловаттов на душу населения лидерами по выработке гидроэнергии являются Норвегия, Исландия и Канада. Сейчас самое активное гидростроительство ведет Китай, где построена примерно половина всех малых ГЭС мира и самая крупная ГЭС в мире - «Три ущелья» на реке Янцзы. Как все страны с быстроразвивающейся экономикой, Китай сделал ставку на ГЭС, и сейчас там гидравлические станции - едва ли не единственный потенциальный источник энергии. Гидроэлектростанции - очень капиталоемкое предприятие: строительство затратное, зато обслуживание стоит копейки. Но вот не все страны могут себе это позволить.

- В Африке гидроэлектростанции строились с помощью российских специалистов. Так и будет дальше?
- У меня есть опасения, что их рано или поздно вытеснят китайцы. Но в Африке действительно подходят к этому вопросу очень серьезно. Наш выпускник Хамиди Ахмет, построивший ГЭС в Марокко, рассказывал, что его статус в те годы соответствовал примерно министерскому. Например, ему был положен личный самолет.

- А европейские страны захотят потом вернуться от атомных станций к ГЭС - или это уже невозможно?
- Во многих странах гидроэнергетический потенциал полностью задействован, поэтому новые станции построить невозможно. Швейцария использует 99 процентов потенциала, Франция - 89%, США и Япония - 82, Канада - 66, Бразилия - 44. А Россия только 20. Строительство ГЭС будет неизбежно развиваться на Дальнем Востоке и в Восточной Сибири - кстати, там гидроэнергетический потенциал используется всего на пять процентов. Кроме того, засуха 2010 года напомнила, что следует развивать и мелиоративное строительство - создание поливных площадей для сельскохозяйственного производства в южных и центральных районах России. Я, кстати, считаю, что идея с поворотом стока сибирских рек для спасения Аральского моря - не так уж безумна, и к ней все равно вернутся не в этом, так в следующем десятилетии. И сейчас разговоры об этом периодически ведутся.

- То есть мы будем своей водой спасть среднеазиатские республики?
- И Россия обретет колоссальный рычаг для влияния в политике всех среднеазиатских государств.

С появлением любой ГЭС страдает окружающая среда. Перекрываются реки, затапливаются огромные территории, меняются флора и фауна, а в дальнейшем - климат. Это может служить ограничением для развития гидроэнергетики?
- Отчуждения территорий требуют практически все виды хозяйственной деятельности: строительство городов, дорог, металлургических комбинатов. Любой шаг человека на земле влияет на окружающую среду. Но человек не будет так ходить, чтобы наступать себе же на ногу. На стадии проектирования оцениваются все объекты предполагаемого строительства, взвешиваются все положительные эффекты, соизмеряются с отрицательным влиянием. Только после такого анализа решения принимается. Или не принимаются. Ограничением для развития гидроэнергетики может явиться только ограничение потребностей общества. Правда, сам я не в восторге от малой гидроэнергетики на небольших реках. Вот там рыбному промыслу может быть нанесен серьезный урон, а энергия меж тем будет получена небольшая. Впрочем, на большинстве станций у нас осознали опасность, которая может быть причинена породам ценных рыб, и стараются не ставить преграды на пути их миграции. Чтобы спасти, скажем, осетра или лосося, на таких реках, как Дон, Волга, Днепр, Обь, Тулома, Кура, Енисей, Даугава, построили рыбоходы и рыбоподъемники - специальные пропускные пункты.

- Енисей в районе Саяно-Шушенской ГЭС превратился в судоходный тупик. Неужели это экономически оправдано?
- Такая проблема возникает при строительстве всех гидроэлектростанций. И их решают. Ну, в районе Саяно-Шушенской ГЭС особого судооборота нет, дикий край. В других местах проблему стараются решать. В Красноярске работает судоподъемник, который поднимает и опускает корабли. Где-то делают отводные каналы. Но проще организовать перевалочный пункт с разгрузкой баржи, погрузкой содержимого в фуры или железнодорожный состав

- В этом веке у нас уже не будет гигантских строек гидроэлектростанций?
- гигантскими кажутся только для обывателей. В мире есть ГЭС, в разы превышающие нашу Саяно-Шушенскую и по мощности, и по объему водохранилища. Сейчас тоже идут большие стройки. Например, Зарамагский гидроузел и Нижне-Черкесский, Мотыгинская, Нижне-Бурейская ГЭС, Богучанская ГЭС, которая уже достраивается.

- Куда развивается гидроэнергетика, и как будут выглядеть ГЭС через 30 - 50 лет?
- Принцип останется тот же: преображение механической энергии водного потока в электрическую. Внешний облик будет прежним, модернизации подвергнется оборудование, позволяющее выйти на более высокий КПД. Например, появятся новые нанотехнологичные материалы с пониженным коэффициентом трения, из которых будут изготавливать турбины. Хотя сейчас слабо верится.

Считается, что главная проблема российских ГЭС - они построены давно и обветшали. Что с ними теперь делать - восстанавливать или строить новые?
- Проблема не в самих ГЭС, а в отношении к ним. Действительно, многие ГЭС, построенные по плану ГОЭЛРО, трудятся уже больше 75 лет. Но на тех ГЭС, где регулярно ведутся планово-предупредительные ремонтные работы, симптомов обветшалости нет. Ведь Петропавловскую крепость ветхой не назовешь. И Исаакиевский, который воздвигнут на деревянных сваях. Наиболее уязвимым элементом ГЭС является ее оборудование - турбины, генераторы, трансформаторы. Их меняют… Недавно обновили на Светогорской и Лесогорской ГЭС.

- А почему тогда произошла авария на Саяно-Шушенской? Или это загадка?
- Никакой загадки нет и не было. Причин тут две. Низкая профессиональная компетенция обслуживающего персонала, точнее, людей, от которых зависит принятие решения. И жадность олигархов, которые стремились максимально сократить обслуживающий персонал, в том числе тот, от которого зависела надежная работа ГЭС.

- Тот айсберг, который нарос на плотине СШГЭС за эту зиму, угрожал ее состоянию - дамбу могло прорвать?
- С точки зрения механики увеличение вертикальной нагрузки, каковой являлись наледи на ледосбросе, увеличивают устойчивость плотины. Горизонтальная нагрузка от давления воды со стороны водохранилища в течение зимы не возрастала. Поэтому опасности не было.

СПРАВКА
План ГОЭЛРО, рассчитанный на 10 - 15 лет, предусматривал строительство 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью 1,75 млн кВт. В числе прочих намечалось построить Штеровскую, Каширскую, Горьковскую, Шатурскую и Челябинскую районные тепловые электростанции, а также ГЭС - Нижегородскую, Волховскую, Днепровскую, две станции на реке Свирь и др. План в основном был перевыполнен к 1931 году. Выработка электроэнергии в 1932 году по сравнению с 1913 годом увеличилась не в 4,5 раза, как планировалось, а почти в 7 раз: с 2 до 13,5 млрд кВт.ч.

Для разработки проекта электрификации 21 февраля 1920 года была создана Государственная комиссия по электрификации России (ГОЭЛРО). В декабре 1920 года выработанный комиссией план был одобрен VIII Всероссийским съездом Советов, а за месяц до этого В. Ленин сказал, что «коммунизм - это есть Советская власть плюс электрификация всей страны» Впрочем, подготовка проекта масштабной электрификации России велась еще до революции 1917 года.

ГИДРОЭНЕРГЕТИКА В МИРЕ
Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме нее этот показатель высок в Норвегии, Канаде, Швеции. Наиболее активное гидростроительство на начало 2000-х ведет Китай.

Страны - крупнейшие производителями гидроэнергии
Страна Потребление гидроэнергии в ТВт.ч
1 Китай 585
2 Канада 369
3 Бразилия 364
4 США 251
5 Россия 167
6 Норвегия 140
7 Индия 116
8 Венесуэла 87
9 Япония 69
10 Швеция 66
11 Франция 63

ПЛЮСЫ И МИНУСЫ ГИДРОЭНЕРГЕТИКИ
- Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии.

Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций.

Строительство ГЭС более капиталоемкое.

Часто ГЭС удалены от потребителей.

Водохранилища занимают значительные территории, с 1960-х годов в СССР используются защитные сооружения, ограничивающие площадь водохранилища.

Плотины изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию . Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках , сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Красноярская ГЭС

  • ГЭС (Плотина Гувера в Неваде)

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор . Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод , посредством которого вода , находящаяся под давлением , подводится ниже уровня дамбы или к водозаборному узлу ГЭС .

Необходимый напор воды образуется посредством строительства плотины , и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 25 МВТ и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Как же такое устройство обеспечивает преобразование энергии воды в электроэнергию? В камере происходит взрыв определенного количества вещества. Взрывная волна жидкости проходит по стволу и попадает в цилиндр. Вследствие этого происходит вращение лопастей турбины, что, в свою очередь, является причиной работы гидрогенератора.

По мнению разработчиков проекта, самым важным условием для обеспечения эффективности изобретения является правильный расчёт веса взрывной волны, необходимого для производства волны, а не всплеска. Кроме того, должна быть точно рассчитана периодичность взрывов, что позволит избежать перерывов в действии устройства и не снижать скорость вращения лопастей. На стадии разработки находятся и другие варианты подобных установок.

Гидроаккумулирующие электростанции

Знак у Киевской ГАЭС

В период малых нагрузок гидроагрегаты станции заняты перекачкой воды из низового водоёма в верховой. Во время повышенной нагрузки происходит использование запасённой воды для выработки пиковой энергии. Обратимые гидроагрегаты обеспечивают работу турбинных и насосных режимов и представляют собой соединение синхронной электрической машины и гидравлической насос-турбины.

Энергия, которая тратится на перекачку, вырабатывается ТЭС во время пониженной загрузки, когда её стоимость не слишком высока. То есть, дешёвая ночная электроэнергия преобразовывается в дорогую. Экономическая эффективность, как можно убедиться, довольно высока. Несомненным преимуществом данного типа гидростанций является наличие высокого напора. Это позволяет устанавливать более эффективные аккумуляторы . Встречаются и станции смешанного типа. Часть установленных там гидроагрегатов способна работать в двух режимах: турбинном и насосном. Другая часть работает только в турбинном режиме. Использование таких станций позволяет накапливать большее количество воды и вследствие этого производить больше электроэнергии в периоды повышенной нагрузки.

Приливные электростанции

Приливная электростанция

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров.

На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии .

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Водяная мельница

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Водяная турбина

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин . Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины . Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока . Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

ГЭС Гувера США

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Усть-Каменогорская ГЭС

К началу двадцатого века развитие российской гидроэнергетики было весьма замедленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тысяч гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тысяч установок были оборудованы гидротурбинами .

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов киловатт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

Уже 13 июня 1918 года было принято решение о начале строительства Волховской гидроэлектростанции, которая стала первым проектом советской гидроэнергетики, а её мощность равнялась 58 МВт. Уже в первые годы советской власти был разработан план электрификации страны (ГОЭЛРО), который был утверждён 22 декабря 1920 года. Одна из глав плана называлась «Электрификация и водная энергия». В ней отмечалось, что использование гидроэлектростанций может представлять выгоду в случае комплексного использования.

План предусматривал сооружение ГЭС общей мощностью в 21254 тысяч лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тысяч лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках .

Это позволило превратитить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони). Развивается гидроэнергетическая отрасль и в России. Сегодня на территории Российской Федерации функционируют сто две гидроэлектростанции.

Суммарная мощность всех работающих российских гидроагрегатов – сорок пять миллионов киловатт (это пятое место в мире). При этом доля гидроэлектростанций в общем объёме получаемой российской энергии составляет двадцать один процент. А это не так уж и много, особенно, учитывая то, что Россия находится на втором месте по экономическому потенциалу гидроресурсов (около 852 миллиардов киловатт в час). Но освоены эти ресурсы лишь на двадцать процентов.

Перспективы гидроэнергетики

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

Потенциал мировой гидроэнергетики

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков , ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10 000 – 20 000 миллиардов киловатт в час (приведены данные ООН).

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вместе с тем, не теряет актуальность вопрос: какую долю этого природного богатства человечество может позволить себе использовать? Для ответа на этот вопрос необходимо представлять возможные последствия работы гидроэлектростанций для окружающей среды.

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.

Экологические аспекты использования гидроэнергетики

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

. Вы можете помочь проекту, исправив и дополнив её.

План:

    Введение
  • 1 Особенности
  • 2 Принцип работы
  • 3 Гидроэнергетика в мире
    • 3.1 Крупнейшие ГЭС в мире
  • 4 Гидроэлектростанции России
  • 5 Преимущества
  • 6 Недостатки
  • 7 Крупнейшие аварии и происшествия
  • Примечания

Введение

Одна из самых крупных по выработке российская ГЭС - Братская

Плотина Серрон Гранде в Сальвадоре, вогнутая для увеличения прочности тела плотины

Гидроэлектроста́нция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.


1. Особенности

  • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • ГЭС не оказывает вредного влияния на экологию.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой - требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

2. Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности :

  • мощные - вырабатывают от 25 МВт и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды :

  • высоконапорные - более 60 м;
  • средненапорные - от 25 м;
  • низконапорные - от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.


3. Гидроэнергетика в мире

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке - 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны :


3.1. Крупнейшие ГЭС в мире


4. Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

4.1. Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) [сн 1] 23,50 [сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС [сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) [сн 3] 3,31 (2,2) [сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45) [сн 3] 2,67 (1,8) [сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. 1 2 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. Строящиеся объекты.
  3. 1 2 3 4 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

4.2. Другие гидроэлектростанции России

4.3. Предыстория развития гидростроения в России

Первая очередь строительства ГЭС:

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика. Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо--машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.


5. Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

6. Недостатки

  • затопление пахотных земель.
  • строительство ведется там, где есть большие запасы энергии воды.
  • на горных реках опасны из-за высокой сейсмичности районов.

7. Крупнейшие аварии и происшествия

  • Крупнейшей аварией за всю историю ГЭС является прорыв плотины китайского водохранилища Банкяо в 1975 году.Число погибших более 170 000 человек,пострадало 11 млн.
  • 17 мая 1943 года - подрыв британскими войсками по операции Chastise плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлекшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных.
  • 9 октября 1963 года - одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии.
  • В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошел прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.
  • 5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъема уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тысяч домов, 35 человек погибли.
  • 17 августа 2009 года - крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС - самая мощная электростанция России). В результате аварии погибло 75 человек, оборудованию и помещениям станции был нанесён серьёзный ущерб.

Примечания

  1. Интервью профессора Дмитрия Селютина.22.08.2009, «ВЕСТИ» - www.youtube.com/watch?v=y6Vw0wTt1Iw
  2. Гидроэлектрическая станция (ГЭС)
  3. T.M. L"état paufine l"ouverture des barrages à la concurrence - www.lesechos.fr/info/energie/020239999544.htm // Les échos . - Paris: 27/11/2009. - № 20561. - С. 21.
  4. «Электроэнергетика. Строители России. XX век.» М.: Мастер, 2003. С.193. ISBN 5-9207-0002-5
  5. По материалам Комиссии ГОЭЛРО
  6. Березовская ГЭС - syrjanowsk.narod.ru/html/beresowskajages.html
  7. Электроэнергетика Иркутской области. Газета «Наука в Сибири» № 3-4 (2139-2140) 23 января 1998 г. - www-sbras.nsc.ru/HBC/hbc.phtml?26 170 1
  8. ГЭС как оружие - Технологии: Hi-Tech / infox.ru - www.infox.ru/hi-tech/tech/2009/08/21/Krupnyeyshiye_GES.phtml
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 16:21:30
Похожие рефераты: Малая гидроэлектростанция.