Анализ видов и последствий отказов. Анализ данных по отказам полевого оборудования в FMEDA


При экспоненциальном законе распределения времени восстановления и времени между отказами для расчета показателей надежности систем с восстановлением используют математический аппарат марковских случайных процессов. В этом случае функционирование систем описывается процессом смены состояний. Система изображается в виде графа, называемого графом переходов из состояния в состояние.

Случайный процесс в какой либо физической системе S , называется марковским , если он обладает следующим свойством: для любого момента t 0 вероятность состояния системы в будущем (t > t 0 ) зависит только от состояния в настоящем

(t = t 0 ) и не зависит от того, когда и каким образом система пришла в это состояние (иначе: при фиксированном настоящем будущее не зависит от предыстории процесса - прошлого).

t < t 0

t > t 0

Для марковского процесса «будущее» зависит от «прошлого» только через «настоящее», т. е. будущее протекание процесса зависит только от тех прошедших событий, которые повлияли на состояние процесса в настоящий момент.

Марковский процесс, как процесс без последействия, не означает полной независимости от прошлого, поскольку оно проявляется в настоящем.

При использовании метода, в общем случае, для системы S , необходимо иметь математическую модель в виде множества состояний системы S 1 , S 2 , … , S n , в которых она может находиться при отказах и восстановлениях элементов.

При составлении модели введены допущения:

Отказавшие элементы системы (или сам рассматриваемый объект) немедленно восстанавливаются (начало восстановления совпадает с моментом отказа);

Отсутствуют ограничения на число восстановлений;

Если все потоки событий, переводящих систему (объект) из состояния в состояние, являются пуассоновскими (простейшими), то случайный процесс переходов будет марковским процессом с непрерывным временем и дискретными состояниями S 1 , S 2 , … , S n .

Основные правила составления модели:

1. Математическую модель изображают в виде графа состояний, в которой

а) кружки (вершины графа S 1 , S 2 , … , S n ) – возможные состояния системы S , возникающие при отказах элементов;

б) стрелки – возможные направления переходов из одного состояния S i в другое S j .

Над/под стрелками указываются интенсивности переходов.

Примеры графа:

S0 – работоспособное состояние;

S1 – состояние отказа.

«Петлей» обозначаются задержки в том или ином состоянии S0 и S1 соответствующие:

Исправное состояние продолжается;

Состояние отказа продолжается.

Граф состояний отражает конечное (дискретное) число возможных состояний системы S 1 , S 2 , … , S n . Каждая из вершин графа соответствует одному из состояний.

2. Для описания случайного процесса перехода состояний (отказ/ восстановление) применяют вероятности состояний

P1(t), P2(t), … , P i (t), … , Pn(t) ,

где P i (t) – вероятность нахождения системы в момент t в i -м состоянии.

Очевидно, что для любого t

(нормировочное условие, поскольку иных состояний, кроме S 1 , S 2 , … , S n нет).

3. По графу состояний составляется система обыкновенных дифференциальных уравнений первого порядка (уравнений Колмогорова-Чепмена).

Рассмотрим элемент установки или саму установку без резервирования, которые могут находится в двух состояниях: S 0 -безотказное (работоспособное), S 1 - состояние отказа (восстановления).

Определим соответствующие вероятности состояний элемента Р 0 (t ): P 1 (t ) в произвольный момент времени t при различных начальных условиях. Эту задачу решим при условии, как ужу отмечалось, что поток отказов простейший с λ = const и восстановлений μ = const , закон распределения времени между отказами и времени восстановления – экспоненциальный.

Для любого момента времени сумма вероятностей P 0 (t ) + P 1 (t ) = 1 – вероятность достоверного события. Зафиксируем момент времени t и найдем вероятность P (t + ∆ t ) того, что в момент времени t + ∆ t элемент находится в работе. Это событие возможно при выполнении двух условий.

    В момент времени t элемент находился в состоянии S 0 и за время t не произошло отказа. Вероятность работы элемента определяется по правилу умножения вероятностей независимых событий. Вероятность того, что в момент t элемент был и состоянии S 0 , равна P 0 (t ). Вероятность того, что за время t он не отказал, равна е -λ∆ t . С точностью до величины высшего порядка малости можно записать

Поэтому вероятность этой гипотезы равна произведению P 0 (t ) (1- λ t ).

2. В момент времени t элемент находится в состоянииS 1 (в состоянии восстановления), за время t восстановление закончилось и элемент перешел в состояниеS 0 . Эту вероятность также определим по правилу умножения вероятностей независимых событий. Вероятность того, что в момент времени t элемент находился в состоянииS 1 , равна Р 1 (t ). Вероятность того, что восстановление закончилось, определим через вероятность противоположного события, т.е.

1 – е -μ∆ t = μ· t

Следовательно, вероятность второй гипотезы равна P 1 (t ) ·μ· t /

Вероятность рабочего состояния системы в момент времени (t + ∆ t ) определяется вероятностью суммы независимых несовместимых событий при выполнении обеих гипотиз:

P 0 (t +∆ t )= P 0 (t ) (1- λ t )+ P 1 (t ) ·μ t

Разделив полученное выражение на t и взяв предел при t → 0 , получим уравнение для первого состояния

dP 0 (t )/ dt =- λP 0 (t )+ μP 1 (t )

Проводя аналогичные рассуждения для второго состояния элемента – состояния отказа (восстановления), можно получить второе уравнение состояния

dP 1 (t )/ dt =- μP 1 (t )+λ P 0 (t )

Таким образом, для описания вероятностей состояния элемента получена система двух дифференциальных уравнений, граф состояний которого показан на рис.2

dP 0 (t )/ dt = - λ P 0 (t )+ μP 1 (t )

dP 1 (t )/ dt = λ P 0 (t ) - μP 1 (t )

Если имеется направленный граф состояний, то систему дифференциальных уравнений для вероятностей состояний Р К (к = 0, 1, 2,…) можно сразу написать, пользуясь следующим правилом: в левой части каждого уравнения стоит производная dP К (t )/ dt , а в правой – столько составляющих, сколько ребер связано непосредственно с данным состоянием; если ребро оканчивается в данном состоянии, то составляющая имеет знак плюс, если начинается из данного состояния, то составляющая имеет знак минус. Каждая составляющая равна произведению интенсивности потока событий переводящего элемент или систему по данному ребру в другое состояние, на вероятность того состояния, из которого начинается ребро.

Систему дифференциальных уравнений можно использовать для определения ВБР электрических систем, функции и коэффициента готовности, вероятности нахождения в ремонте (восстановлении) нескольких элементов системы, среднего времени пребывания системы в любом состоянии, интенсивности отказов системы с учетом начальных условий (состояний элементов).

При начальных условиях Р 0 (0)=1; Р 1 (0)=0 и (Р 0 1 =1), решение системы уравнений, описывающих состояние одного элемента имеет вид

P 0 (t ) = μ / (λ+ μ )+ λ/(λ+ μ )* e ^ -(λ+ μ ) t

Вероятность состояния отказа P 1 (t )=1- P 0 (t )= λ/(λ+ μ )- λ/ (λ+ μ )* e ^ -(λ+ μ ) t

Если в начальный момент времени элемент находился в состоянии отказа (восстановления), т.е. Р 0 (0)=0, Р 1 (0)=1 , то

P 0 (t) = μ/ (λ +μ)+ μ/(λ +μ)*e^ -(λ +μ)t

P 1 (t) = λ /(λ +μ)- μ/ (λ +μ)*e^ -(λ +μ)t


Обычно в расчетах показателей надежности для достаточно длительных интервалов времени (t ≥ (7-8) t в ) без большой погрешности вероятности состояний можно определять по установившимся средним вероятностям -

Р 0 (∞) = К Г = Р 0 и

Р 1 (∞) = К П 1 .

Для стационарного состояния (t →∞) P i (t) = P i = const составляется система алгебраических уравнений с нулевыми левыми частями, поскольку в этом случае dP i (t)/dt = 0. Тогда система алгебраических уравнений имеет вид:

Так как Кг есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяетсяP 0 = Кг .,т.е вероятность работы элемента равна стационарному коэффициенту готовности, а вероятность отказа – коэффициенту вынужденного простоя:

lim P 0 (t ) = Кг = μ /(λ+ μ ) = T /(T + t в )

lim P 1 (t ) = Кп = λ /(λ+ μ ) = t в /(T + t в )

т.е., получился тот же результат, что и при анализе предельных состояний с помощью дифференциальных уравнений.

Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем).

В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности μ выхода из этих состояний исключаются.

Для невосстанавливаемого объекта граф состояний имеет вид:

Система дифференциальных уравнений:

При начальных условиях: P 0 (0) = 1; P 1 (0) = 0 , используя преобразование Лапласа вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке t составит .

Методология FMEA, примеры

FMEA (Failure Mode and Effects Analysis) – это анализ видов и последствий отказов. Изначально разработанный и опубликованный военно-промышленным комплексом США (в форме стандарта MIL-STD-1629), анализ видов и последствий отказов является сегодня таким популярным, поскольку в некоторых отраслях промышленности разработаны и опубликованы специализированные стандарты, посвященные FMEA.

Несколько примеров таких стандартов:

  • MIL-STD-1629. Разработан в США и является родоначальником всех современных стандартов FMEA.
  • SAE-ARP-5580 – доработанный MIL-STD-1629, дополненный библиотекой некоторых элементов для автомобильной промышленности. Используется во многих отраслях.
  • SAE J1739 - стандарт FMEA, описывающий Анализ Видов и Последствий потенциальных Отказов при проектировании (Potential Failure Mode and Effects Analysis in Design, DFMEA) и Анализ Видов и Последствий потенциальных Отказов в производственных и сборочных процессах (Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes, PFMEA). Стандарт помогает определить и снизить риск, предоставляя соответствующие условия, требования, рейтинговые диаграммы и рабочие листы. Как стандарт этот документ содержит требования и рекомендации, направляющие пользователя в ходе выполнения FMEA.
  • AIAG FMEA-3 – специализированный стандарт, используемый в автомобильной индустрии.
  • Внутренние FMEA-стандарты крупных компаний-автопроизводителей.
  • Исторически развивавшиеся во многих компаниях и отраслях процедуры, схожие с анализом видов и последствий отказов. Возможно, на сегодня это и есть «стандарты» FMEA наиболее широкого охвата.

Все стандарты анализа видов и последствий отказов (опубликованные или развившиеся исторически), в целом, очень схожи между собой. Приведённое ниже общее описание даёт общее представление о FMEA как методологии. Оно намеренно выполнено на не слишком глубоком уровне и охватывает большинство используемых в настоящее время подходов к FMEA.

Прежде всего, должны быть чётко определены границы анализируемой системы. Система может представлять собой техническое устройство, процесс или что угодно ещё, подлежащее FME-анализу.

Далее идентифицируются виды возможных отказов, их последствия и возможные причины возникновения. В зависимости от размера, природы и сложности системы определение видов возможных отказов может быть выполнено для всей системы в целом или для каждой её подсистемы индивидуально. В последнем случае последствия отказов на уровне подсистемы будут проявляться, как виды отказов на уровень выше. Идентификация видов и последствий отказов должна быть выполнена методом «снизу-вверх», до достижения верхнего уровня системы. Для характеристики видов и последствий отказов, определённых на верхнем уровне системы, используются такие параметры, как интенсивность, критичность отказов, вероятность возникновения и т.п. Эти параметры могут быть или рассчитаны «снизу-вверх» с нижних уровней системы, или явно заданы на её верхнем уровне. Эти параметры могут носить как количественный, так и качественный характер. В результате для каждого элемента системы верхнего уровня рассчитывается своя уникальная мера, вычисляемая из этих параметров по соответствующему алгоритму. В большинстве случаев эту меру называют «коэффициентом приоритетности риска», «критичностью», «уровнем риска» или другим подобным образом. Способы использования такой меры и методики её вычисления могут быть уникальными в каждом конкретном случае и являются хорошей отправной точкой для того, чтобы многообразие современных подходов к проведению анализа видов и последствий отказов (FMEA).

Пример применения FMEA в ВПК

Назначение параметра «Критичность» - демонстрация того, что требования к безопасности системы полностью выполнены (в простейшем случае это означает, что все показатели критичности находятся ниже заранее определенного уровня.

Аббревиатура FMECA (Failure Mode, Effects and Criticality Analysis) обозначает «Анализ видов, последствий и критичности отказов».

Основными показателями, используемыми для расчета значения Критичности, являются:

  • интенсивность отказов (определенная с помощью расчёта наработок на отказ - MTBF),
  • вероятность отказа (в процентах от показателя интенсивности отказов),
  • время наработки.

Таким образом, очевидно, что параметр критичности имеет реальное точное значение для каждой конкретной системы (или её компонента).

Существует достаточно широкий спектр доступных каталогов (библиотек), содержащих вероятности отказов разных видов для различных электронных компонентов:

  • FMD 97
  • MIL-HDBK-338B
  • NPRD3

Дескриптор библиотеки по конкретному компоненту, в общем случае, выглядит следующим образом:

Поскольку для расчета параметра критичности отказа необходимо знать значения показателя интенсивности отказов, в военно-промышленном комплексе перед применением методологии FME[C]A выполняют расчет наработок на отказ по методике MTBF, результаты которого и использует FME[C]A. Для элементов системы, показатель критичности отказа которых превышает установленные требованиями безопасности допуски, должен проводиться также соответствующий Анализ дерева отказов (FTA, Fault Tree Analysis) . В большинстве случаев анализ видов, последствий и критичности отказов (FMEA) для потребностей ВПК выполняется одним специалистом (являющимся экспертом по проектированию электронных схем или специалистом по контролю их качества) или очень небольшой группой таких специалистов.

FMEA в автомобилестроении

Для каждого Коэффициента (или Числа) приоритетности риска (Risk Priority Number, RPN) отказа, превышающего предопределенный уровень (часто равный 60 или 125), определяются и проводятся корректирующие действия. Как правило, определяются ответственные за реализацию таких мер, сроки их реализации и способ последующей демонстрации эффективности предпринятых корректирующих действий. После выполнения корректирующих мероприятий проводятся повторная переоценка значения Коэффициента приоритетности риска отказа и его сопоставление с предельной установленной величиной.

Основными показателями, используемыми для расчета значения Коэффициента приоритетности риска, являются:

  • вероятность возникновения отказа,
  • критичность,
  • вероятность обнаружения отказа.

В большинстве случаев Коэффициент приоритетности риска выводится на базе значений указанных выше трех показателей (безразмерные значения которых лежат в границах от 1 до 10), т.е. является расчётной величиной, изменяющейся в подобных же границах. Однако, в случаях наличия фактических (ретроспективных) точных значений интенсивности возникновения отказов для конкретной системы, границы нахождения Коэффициента приоритетности риска могут быть многократно расширены, например:

В большинстве случаев анализ по методологии FMEA в автомобильной промышленности осуществляется внутренней рабочей группой представителей разных подразделений (НИОКР, производственных, сервисных, контроля качества).

Особенности методик анализа FMEA, FMECA и FMEDA

Методы анализа надёжности FMEA (анализ видов и последствий отказов), FMECA (анализ видов, последствий и критичности отказов) и FMEDA (анализ видов, последствий и диагностируемости отказов), хотя и имеют много общего, содержат несколько заметных различий

Тогда как FMEA - методология, позволяющая определить сценарии (способы), по которым продукт (оборудование), устройство противоаварийной защиты (ПАЗ), технологический процесс или система могут выйти из строя (см. стандарт IEC 60812 "Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA)"),

FMECA, в дополнение к FMEA, ранжирует идентифицированные виды отказов в порядке их важности (критичности) посредством вычисления одного из двух показателей - числа приоритетности риска (Risk Priority Number) или критичности (failure criticality) отказа,

а целью FMEDA является вычисление частоты (интенсивности) отказов (failure rate) конечной системы, в качестве которой может рассматриваться устройство или группа устройств, выполняющая более сложную функцию. Методология анализа видов, последствий и диагностируемости отказов FMEDA была сначала разработана для анализа электронных устройств, а впоследствии распространена на механические и электромеханические системы.

Общие понятия и подходы FMEA, FMECA и FMEDA

FMEA, FMECA и FMEDA используют общие базовые понятия компонентов, устройств и их компоновки (взаимодействия). Функция противоаварийной защиты (Safety Instrumented Function, SIF) состоит из нескольких устройств, которые должны обеспечить выполнение необходимой операции по защите машины, оборудования или технологического процесса от последствий опасности, сбоя. Примерами устройств ПАЗ могут служить преобразователь, изолятор, контактная группа и т.п.

Каждое устройство состоит из компонентов. Например, преобразователь может состоять из таких компонентов, как прокладки, болты, мембрана, электронная схема и т.д.

Сборка из устройств может рассматриваться, как одно комбинированное устройство, реализующее функцию ПАЗ. Например, привод-позиционер-клапан - это сборка устройств, которую совокупно можно рассматривать в качестве конечного элемента безопасности ПАЗ. Компоненты, устройства и сборки могут являться частями конечной системы для целей её оценки методами FMEA, FMECA или FMEDA.

Базовая методология, лежащая в основе FMEA, FMECA и FMEDA, может применяться до или во время проектирования, производства или окончательного монтажа конечной системы. Базовая методология рассматривает и анализирует виды отказов каждого компонента, являющегося частью каждого устройства, для оценки шанса отказа всех компонентов.

В случаях выполнения FME-анализа для сборки в дополнение к идентификации видов и последствий отказов должна быть разработана блок-схема (диаграмма) надёжности этой сборки для оценки взаимодействия устройств между собой (см. стандарт IEC 61078:2006 "Analysis techniques for dependability - Reliability block diagram and boolean methods").

Входные данные, результаты и оценки результатов выполнения FMEA, FMECA, FМEDA схематично показаны на картинке (справа). Увеличить картинку.

Общий подход определяет следующие основные шаги FME-анализа:

  • определение конечной системы и её структуры;
  • определение возможных сценариев для выполнения анализа;
  • оценка возможных ситуаций комбинаций сценариев;
  • выполнение FME-анализа;
  • оценка результатов FME-анализа (в т.ч. FMECA, FMEDA).

Применение к результатам анализа видов и последствий отказов (FMEA) методики FMECA даёт возможность оценки связанных с отказами рисков, а методики FMEDA - возможность оценки надёжности.

Для каждого простого устройства разрабатывается таблица FME, которая затем применяется каждого определённого сценария выполнения анализа. Структура таблицы FME может варьироваться для FMEA, FMECA или FMEDA, а также в зависимости от природы конечной анализируемой системы.

Результатом выполнения анализа видов и последствий отказов является отчет, содержащий все выверенные (при необходимости, скорректированные рабочей группой экспертов) FME-таблицы и выводы / суждения / решения, касающиеся конечной системы. Если после выполнения FME-анализа конечная система модифицируется, процедуру FMEA необходимо выполнить повторно.

Различия оценок и результатов FME-, FMEC- и FMED-анализа

Хотя основные шаги при выполнении FME-анализа, в целом, одинаковы для FMEA, FMECA и FMEDA, оценка и результаты различаются.

Результаты выполнения анализа FMECA включают результаты FMEA, а также ранжирование всех видов и последствий отказов. Это ранжирование используется для определения компонентов (или устройств) с более высокой степенью влияния на надёжность конечной (целевой) системы, характеризуемую такими показателями безопасности, таких как средняя вероятность отказа по требованию (PFDavg), средняя опасная частота отказа (PFHavg).), среднее время наработки на отказ (MTTFs) или среднее время до опасного отказа (MTTFd).

Результаты FMECA могут использоваться для качественной или количественной оценки, и в обоих случаях они должны быть представлены матрицей критичности конечной системы, показывающей в графическом виде, какие компоненты (или устройства) оказывают большее / меньшее влияние на надежность конечной (целевой) системы.

Результаты FMEDA включают результаты FMEA и данные о надежности конечной системы. Они могут использоваться для проверки соответствия системы целевому уровню SIL, сертификации SIL или в качестве основания при расчете целевого SIL устройства ПАЗ .

FMEDA предоставляет количественные оценки таких показателей надежности, как:

  • Safe detected failure rate (интенсивность диагностируемых / обнаруживаемых безопасных отказов) - частота (интенсивность) отказов конечной системы, переводящих её рабочее состояние из нормального в безопасное. Система или оператор ПАЗ уведомлены, целевая установка или оборудование защищены;
  • Safe undetected failure rate (интенсивность недиагностируемых / необнаруживаемых безопасных отказов) - частота (интенсивность) отказов конечной системы, переводящих её рабочее состояние из нормального в безопасное. Система или оператор ПАЗ не уведомлены, целевая установка или оборудование защищены;
  • Dangerous detected failure rate (интенсивность диагностируемых / обнаруживаемых опасных отказов) - частота (интенсивность) отказов конечной системы, при которой она будет оставаться в нормальном состоянии, когда возникнет необходимость, но система или оператор ПАЗ уведомлены для устранения проблемы или выполнения технического обслуживания. Целевая установка или оборудование не защищены, но проблема идентифицирована, и есть шанс устранить неисправность до того, как возникнет необходимость;
  • Dangerous undetected failure rate (интенсивность недиагностируемых / необнаруживаемых опасных отказов) - частота (интенсивность) отказов конечной системы, при которой она будет оставаться в нормальном состоянии, когда возникнет необходимость, но система или оператор ПАЗ не уведомлены. Целевая установка или оборудование не защищены, проблема является скрытой, и единственным способом выявления и устранения неисправности является выполнение контрольного теста (проверки). При необходимости оценка FMEDA может выявить, какая часть недиагностируемых опасных отказов может быть идентифицирована с помощью контрольного теста. Другими словами, оценка FMEDA помогает обеспечить показатели Эффективности контрольного теста (Et) или Покрытия контрольного теста (PTC) при выполнении контрольного тестирования (проверки) конечной системы;
  • Annunciation failure rate (интенсивность отказов-оповещений) - частота (интенсивность) отказов конечной системы, которая не повлияет на показатели безопасности при переводе её рабочего состояния из нормального в безопасное состояние;
  • No effect failure rate (интенсивность отказов без последствий) - частота (интенсивность) любых других отказов, которые не приведут к переходу рабочего состояния конечной системы из нормального в безопасное или опасное.

Компания KConsult C.I.S. предлагает профессиональные услуги сертифицированных европейских инженеров-практиков по выполнению анализа FMEA, FMECA, FMEDA, а также внедрению методологии FMEA в повседневную деятельность промышленных предприятий.

При разработке и производстве различного оборудования периодически возникают дефекты. Что в результате? Производитель несет значительные убытки, связанные с дополнительными тестами, проверками и изменениями проекта. Однако это — не бесконтрольный процесс. Оценить возможные угрозы и уязвимости, а также проанализировать потенциальные дефекты, которые могут помешать работе оборудования, можно с помощью анализа FMEA.

Впервые данный метод анализа был использован в США в 1949 году. Тогда его применяли исключительно в военной промышленности при проектировании нового вооружения. Однако уже в 70-х идеи FMEA оказались в крупных корпораций. Одной из первых данную технологию внедрила компания Ford (на тот момент — крупнейший производитель автомобилей).

В наши дни метод FMEA-анализа используется практически всеми машиностроительными предприятиями. Основные принципы риск-менеджмента и анализа причин отказов описаны в ГОСТ Р 51901.12-2007.

Определение и суть метода

FMEA — аббревиатура от Failure Mode and Effect Analysis. Это — технология анализа разновидностей и последствий возможных отказов (дефектов, по причине которых объект теряет возможность выполнять свои функции). Чем хорош данный метод? Он дает предприятию возможность предвидеть возможные проблемы и неполадки еще на В ходе анализа производитель получает такую информацию:

  • перечень потенциальных дефектов и неисправностей;
  • анализ причин их возникновения, тяжести и последствий;
  • рекомендации по снижению рисков в порядке приоритетности;
  • общая оценка безопасности и надежности продукции и системы в целом.

Данные, полученные в результате анализа, документируются. Все обнаруженные и изученные отказы классифицируют по степени критичности, легкости обнаружения, ремонтопригодности и частоте возникновения. Основная задача — выявить проблемы до того, как они возникнут и начнут влиять на клиентов компании.

Сфера применения FMEA-анализа

Этот способ исследования активно используется практически во всех технических отраслях, таких как:

  • автомобиле- и кораблестроение;
  • авиационная и космическая промышленность;
  • химическая и нефтеперерабатывающая;
  • строительство;
  • изготовление промышленного оборудования и механизмов.

В последние годы этот метод оценки рисков все чаще применяется и в непроизводственной сфере — например в менеджменте и маркетинге.

FMEA может проводиться на всех этапах жизненного цикла товара. Однако чаще всего анализ выполняется на этапе разработки и модификации продукции, а также при использовании уже существующих конструкций в новой среде.

Виды

С помощью технологии FMEA изучают не только различные механизмы и устройства, но также процессы управления компанией, производства и эксплуатации продукции. В каждом случае метод имеет свои специфические особенности. Объектом анализа могут быть:

  • технические системы;
  • конструкции и изделия;
  • процессы производства, комплектации, установки и обслуживания продукции.

При обследовании механизмов определяют риск несоответствия нормам, возникновения неполадок в процессе работы, а также поломки и снижение срока службы. При этом учитываются свойства материалов, геометрия конструкции, ее характеристики, интерфейсы взаимодействия с другими системами.

FMEA-анализ процесса позволяет обнаружить несоответствия, влияющие на качество и безопасность продукции. Также учитываются удовлетворенность покупателей и экологические риски. Здесь проблемы могут возникать со стороны человека (в частности сотрудников предприятия), технологии производства, используемого сырья и оборудования, измерительных систем, влияния на окружающую среду.

При проведении исследования используются разные подходы:

Выбор зависит от целей проведения анализа. Он может быть частью комплексного исследования в дополнение к другим методам или применяться как самостоятельный инструмент.

Этапы проведения

Вне зависимости от конкретных задач, FMEA-анализ причин и последствий возникновения отказов проводится по универсальному алгоритму. Рассмотрим детальнее этот процесс.

Подготовка экспертной группы

Прежде всего нужно определиться, кто будет проводить исследование. Командная работа — один из ключевых принципов FMEA. Только такой формат обеспечивает качество и объективность экспертизы, а также создает пространство для нестандартных идей. Как правило, команда состоит из 5-9 человек. В нее входят:

  • руководитель проекта;
  • инженер-технолог, выполняющий разработку технологического процесса;
  • инженер-конструктор;
  • представитель производства или ;
  • сотрудник отдела работы с потребителями.

В случае необходимости для анализа конструкций и процессов могут привлекаться квалифицированные специалисты из сторонних организаций. Обсуждение возможных проблем и путей их решения происходит на серии заседаний длительностью до 1,5 часов. Они могут проводиться как в полном, так и в неполном составе (если присутствие определенных экспертов не нужно для решения текущих вопросов).

Изучение проекта

Для проведения анализа FMEA нужно четко обозначить объект исследования и его границы. Если мы говорим о технологическом процессе, следует обозначить начальное и завершающее события. Для оборудования и конструкций все проще — можно рассматривать их как комплексные системы или сосредоточиться на конкретных механизмах и элементах. Несоответствия можно рассматривать с учетом потребностей потребителя, этапа жизненного цикла товара, географии использования и т. д.

На этом этапе члены экспертной группы должны получить подробное описание объекта, его функций и принципов работы. Объяснения должны быть доступными и понятными всем членам команды. Обычно на первой сессии проводятся презентации, эксперты изучают инструкции по изготовлению и эксплуатации конструкций, плановые параметры, нормативную документацию, чертежи.

#3: Составление списка потенциальных дефектов

После теоретической части команда приступает к оценке возможных отказов. Составляется полный перечень всех возможных несоответствий и дефектов, которые могут возникнуть на объекте. Они могут быть связаны с поломкой отдельных элементов либо их неправильным функционированием (недостаточная мощность, неточность, малая производительность). При анализе процессов нужно перечислить конкретные технологические операции, при выполнении которых есть риск ошибок — например невыполнения или неправильного выполнения.

Описание причин и последствий

Следующий шаг — углубленный анализ подобных ситуаций. Основная задача — понять, что может привести к возникновению тех или иных ошибок, а также то, как обнаруженные дефекты могут повлиять на работников, потребителей и компанию в целом.

Для определения вероятных причин дефектов команда изучает описания операций, утвержденные требования к их выполнению, а также статистические отчеты. В протоколе FMEA-анализа также можно указать факторы риска, которые предприятие может корректировать.

Одновременно команда обдумывает, что можно предпринять, чтобы исключить шанс возникновения дефектов, предлагает методы контроля и оптимальную периодичность проверок.

Экспертные оценки

  1. S — Severity/Значимость. Определяет, насколько тяжелыми будут последствия данного дефекта для потребителя. Оценивается по 10-балльной шкале (1 — практически не влияют, 10 — катастрофические, при которых производитель или поставщик могут понести уголовное наказание).
  2. O — Occurrence/Вероятность. Показывает, как часто возникает определенное нарушение и может ли ситуация повториться (1 — крайне маловероятно, 10 — отказ наблюдается более чем в 10% случаев).
  3. D — Detection/Обнаружение. Параметр для оценки методов контроля: помогут ли они своевременно выявить несоответствие (1 — почти гарантированно обнаружат, 10 — скрытый дефект, который невозможно выявить до наступления последствий).

На основе этих оценок определяют приоритетное число рисков (ПЧР) для каждого вида отказа. Это обобщенный показатель, который позволяет выяснить, какие поломки и нарушения несут в себе наибольшую угрозу для фирмы и ее клиентов. Рассчитывается по формуле:

ПЧР = S × O × D

Чем выше ПЧР — тем опаснее нарушение и разрушительнее его последствия. В первую очередь необходимо устранить или снизить риск дефектов и неполадок, у которых данное значение превышает 100-125. От 40 до 100 баллов набирают нарушения, имеющие средний уровень угрозы, а ПЧР менее 40 говорит о том, что сбой незначительный, возникает редко и может быть без проблем обнаружен.

После оценки отклонений и их последствий, рабочая группа FMEA определяет приоритетные направления работы. Первоочередная задача заключается в том, чтобы составить план корректировочных мероприятий для "узких мест" — элементов и операций с самыми высокими показателями ПЧР. Чтобы снизить уровень угрозы, необходимо повлиять на один или несколько параметров:

  • устранить первоначальную причину возникновения отказа, изменив конструкцию или процесс (оценка O);
  • предотвратить появление дефекта с помощью методов статистического регулирования (оценка О);
  • смягчить негативные последствия для покупателей и заказчиков — например снизить цены на бракованную продукцию (оценка S);
  • внедрить новые инструменты для своевременного обнаружения неисправностей и последующего ремонта (оценка D).

Чтобы предприятие могло сразу приступить к выполнению рекомендаций, команда FMEA одновременно разрабатывает план их внедрения с указанием последовательности и сроков выполнения каждого вида работ. В этом же документе содержится информация об исполнителях и ответственных за проведение корректировочных мероприятий, источниках финансирования.

Подведение итогов

Заключительный этап — подготовка отчета для руководителей компании. Какие разделы он должен содержать?

  1. Обзор и подробные заметки о ходе исследования.
  2. Потенциальные причины возникновения дефектов при производстве/эксплуатации оборудования и выполнении технологических операций.
  3. Список вероятных последствий для сотрудников и потребителей — отдельно для каждого нарушения.
  4. Оценка уровня риска (насколько опасны возможные нарушения, какие из них могут привести к серьезным последствиям).
  5. Перечень рекомендаций для службы техобслуживания, проектировщиков и специалистов в сфере планирования.
  6. График проведения и отчеты о проведении корректировочных мероприятий на основе результатов анализа.
  7. Список потенциальных угроз и последствий, которые удалось устранить за счет изменения проекта.

К отчету прилагают все таблицы, графики и диаграммы, которые служат для визуализации информации об основных проблемах. Также рабочая группа должна предоставить использованные схемы оценки несоответствий по значимости, частоте и вероятности обнаружения с подробной расшифровкой шкалы (что означает то или иное количество баллов).

Как заполнять протокол FMEA?

В ходе исследования все данные должны фиксироваться в специальном документе. Это «Протокол анализа причин и последствий FMEA». Он представляет собой универсальную таблицу, куда вносится вся информация о вероятных дефектах. Данная форма подходит для исследования любых систем, объектов и процессов в любых отраслях промышленности.

Первая часть заполняется на основе личных наблюдений членов команды, изучения статистики предприятия, рабочих инструкций и другой документации. Основная задача - понять, что может помешать работе механизма или выполнению какой-либо задачи. На заседаниях рабочая группа должна оценить последствия этих нарушений, ответить, насколько они опасны для работников и потребителей и какова вероятность, что дефект будет обнаружен еще на стадии производства.

Во второй части протокола описываются варианты предотвращения и устранения несоответствий, перечень мероприятий, разработанных FMEA-командой. Отдельная графа предусмотрена для назначения ответственных за реализацию тех или иных задач, а после внесения корректировок в конструкцию или организацию бизнес-процесса руководитель указывает в протоколе список выполненных работ. Заключительный этап - повторное выставление оценок с учетом всех изменений. Сравнив изначальные и итоговые показатели, можно сделать вывод об эффективности выбранной стратегии.

Для каждого объекта создается отдельный протокол. В самом верху находится название документа — "Анализ типов и последствий потенциальных дефектов". Чуть ниже указываются модель оборудования или название процесса, даты проведения предыдущей и следующей (по графику) проверок, актуальная дата, а также подписи всех участников рабочей группы и ее руководителя.

Пример FMEA-анализа ("Тулиновский приборостроительный завод")

Рассмотрим, как происходит процесс оценки потенциальных рисков на опыте крупной российской промышленной компании. В свое время руководство "Тулиновского приборостроительного завода" (ОАО "ТВЕС") столкнулось с проблемой градуировки электронных весов. Предприятие выпускало большой процент некорректно работающего оборудования, которое отдел технического контроля был вынужден отправлять обратно.

После изучения последовательности действий и требований к процедуре градуировки команда FMEA выделила четыре подпроцесса, которые сильнее всего влияли на качество и точность градуировки.

  • перемещение и установка прибора на стол;
  • проверка положения по уровню (весы должны располагаться 100% горизонтально);
  • расстановка грузов в платформы;
  • регистрация частотных сигналов.

Какие виды отказов и неполадок были зафиксированы при выполнении данных операций? Рабочая группа выделила основные риски, проанализировала причины их возникновения и возможные последствия. На основе экспертных оценок были рассчитаны показатели ПЧР, что дало возможность определить основные проблемы — отсутствие четкого контроля за выполнением работ и состоянием оборудования (стенда, гирь).

Этап Сценарий отказа Причины Последствия S O D ПЧР
Перемещение и установка весов на стенд. Риск падения весов из-за большого веса конструкции. Отсутствует специализированный транспорт. Повреждение или поломка устройства. 8 2 1 16
Проверка горизонтального положения по уровню (устройство должно стоять абсолютно ровно). Некорректная градуировка. Столешница стенда не была выверена по уровню. 6 3 1 18
Сотрудники не следуют рабочим инструкциям. 6 4 3 72
Расстановка грузов в реперных точках платформы. Использование грузов неподходящего размера. Эксплуатация старых, изношенных гирь. ОТК возвращает брак из-за метрологического несоответствия. 9 2 3 54
Отсутствие контроля за процессом расстановки. 6 7 7 252
Механизм или датчики стенда вышли из строя. Гребенки подвижного каркаса перекошены. От постоянного трения гири быстро изнашиваются. 6 2 8 96
Оборвался трос. Приостановка производства. 10 1 1 10
Вышел из строя мотор-редуктор. 2 1 1 2
Не соблюдается график плановых осмотров и ремонта. 6 1 2 12
Регистрация частотных сигналов датчика. Программирование. Потеря данных, которые вносились в запоминающее устройство. Перебои с электричеством. Нужно проводить градуировку повторно. 4 2 3 24

Для устранения факторов риска были разработаны рекомендации по дополнительному обучению сотрудников, модификации столешницы стенда и покупке специального роликового контейнера для перевозки весов. Покупка блока бесперебойного питания решила проблему с утратой данных. А чтобы предупредить возникновение проблем с градуировкой в будущем, рабочая группа предложила новые графики техобслуживания и плановой калибровки гирь — проверки начали проводить чаще, за счет чего повреждения и сбои можно обнаружить гораздо раньше.

Испытания технологических процессов на завершенность.

Испытания конструкции на завершенность.

Эти испытания проводятся на первых опытных образцах изделия. Их цель - показать, что конструкция изделия удовлетворяет требованиям по надежности.

При этом не имеет значения, каким способом был построен опытный образец и какие усилия пошли на его отладку. Если требуемый уровень надежности изделия не достигнут, конструкция должна быть улучшена. Испытания продолжаются до тех пор, пока изделие не будет удовлетворять всем заданным требованиям.

На протяжении этих испытаний регистрируются отказы в начальный период эксплуатации изделия. С помощью этих данных достигается полная согласованность между конструкцией изделия и процессами, необходимыми для его изготовления, и определяется объем испытаний, необходимых для достижения требуемой надежности при доставке [ изделия потребителям.

Испытания проводятся также на первых образцах изделий. Эти I образцы работают в течение заданного периода (периода приработки). Характеристики их работы тщательно контролируются, измеряется убывающая интенсивность отказов. После периода приработки соби раются опытные данные, позволяющие измерить и проверить показа тели эксплуатационной надежности изделия и сравнить их с резуль| татами, полученными при испытании изделия на завершенность.I Наблюдения, проведенные во время этих испытаний, позволяют задать величину периода приработки изделия.

Испытания на долговечность. На протяжении этих испытаний регистрируются износовые отказы элементов изделия и строится их распределение. Полученные данные используются для устранения. причин тех отказов, возникновение которых приводит к неприемле мому снижению ожидаемого срока службы изделия. Испытания на долговечность ведутся на ряде образцов данного изделия. При этих испытаниях надо определить границу перехода от постоянной интен сивности отказов к возрастающей и построить распределение для каждого наблюдаемого вида отказов.

Одним из эффективных средств повышения качества технических объектов является анализ видов и последствий потенциальных отказов (Potential Failure Mode and Effects Analysis - FMEA). Анализ доводится на этапе проектирования конструкции или технологичecкого процесса (соответствующие этапы жизненного цикла изделия - разработка и подготовка к производству), а также при доработке и улучшении изделий, уже запущенных в производство. Целесообразно разделить этот анализ на два этапа: отдельный анализ нa этапе отработки конструкции и на этапе отработки технологического процесса.

Стандарт (ГОСТ Р 51814.2-2001. Системы качества в автомобилестроении. Метод анализа видов и последствий потенциальных дефектов) предусматривает и возможность использования метода FMEA при разработке и анализе других процессов, таких, как процессы продаж, обслуживания, маркетинга.



Основные цели анализа видов и последствий потенциальных отказов:

Выявление критичных отказов, связанных с опасностью для жизни людей и окружающей среды и разработка мероприятий
по снижению вероятности их возникновения и тяжести возмож ных последствий;

Выявление и устранение причин любых возможных отказов изделия для повышения его надежности.

При проведении анализа решаются следующие задачи:

Выявление возможных отказов объекта (изделия или процесса) и его элементов (при этом учитывается опыт изготовления и эксплуатации аналогичных объектов),

Изучение причин отказов, количественная оценка частоты их возникновения,

Классификация отказов по тяжести последствий и количественная оценка значимости этих последствий,

Оценка достаточности средств контроля и диагностики оценка возможности обнаружения отказа, возможность предотвращения отказа при практическом использовании этих средств,

Разработка предложений по изменению конструкции и технологии изготовления с целью снижения вероятности отказов и их критичности,

Разработка правил поведения персонала при возникновении критических отказов,

анализ возможных ошибок персонала.

Для проведения анализа формируется группа специалистов, имеющих практический опыт и высокий профессиональный уровень в области конструирования аналогичных объектов, знающих процессы производства компонентов и сборки объекта, " технологию контроля и диагностики состояния объекта, методы " обслуживания и ремонта. Используется метод мозгового штурма. При этом на этапе качественного анализа разрабатывается структурная схема объекта: объект рассматривается как система, состоящая из подсистем различного уровня, которые в свою " очередь состоят из отдельных элементов.

Анализируются возможные виды отказов и их последствия снизу вверх, т.е. от элементов к подсистемам, и затем к объекту в целом. При анализе учитывается, что каждый отказ может иметь несколько причин и несколько различных последствий.

На этапе количественного анализа экспертно, в баллах, оценивается критичность отказа с учетом вероятности его возникновения, вероятности его выявления и оценки тяжести возможных последствий. Риск отказа (приоритетное число риска) может быть найден по формуле: I

где значение О определяется в баллах в зависимости от вероятности отказа,- от вероятности выявления (обнаружения) отказа", зависит от тяжести последствий отказа.

Найденное значение.для каждого элемента по каждой причине и по каждому возможному последствию сравнивается с критическим. Критическое значение устанавливается заранее и выбирается в пределах от 100 до 125. Снижение критического, значения соответствует разработке более надежных изделий и процессов.

Для каждого отказа, у которого значение R превышает критическое, разрабатываются меры по его снижению путем доработки конструкции и технологии изготовления. Для нового варианта объекта критичность объекта R рассчитывается заново. При необходимости процедура доработки повторяется вновь.

Мощный инструмент анализа данных для повышения надежности

Уильям Гобл для InTech

Анализ видов и последствий отказов (от англ.: Failure Mode and Effects Analysis или FMEA) - это специальная техника оценки надежности и безопасности систем, разработанная в 60-х гг. прошлого столетия в США, в рамках программы создания ракеты «Минитмен». Целью ее разработки было обнаружение и устранение технических проблем в сложных системах.

Техника достаточно проста. Виды отказов каждого компонента той или иной системы перечисляются в специальной таблице и документируются - вместе с предполагаемыми последствиями. Метод систематический, эффективный и детальный, хотя иногда и считается затратным по времени, а также, склонным к повторяющимся действиям. Причина эффективности метода в том, что изучается каждый вид отказа каждого отдельного компонента. Ниже приведен пример таблицы, описанный в одном из исходных руководств по применению этого метода, а именно, в MIL-HNBK-1629.

В колонке №1 содержится название исследуемого компонента, в колонке №2 - идентификационный номер компонента (серийный номер или код). Вместе первые две колонки должны уникально идентифицировать исследуемый компонент. Колонка №3 описывает функцию компонента, а колонка №4 - возможные виды отказов. Для каждого вида отказа, как правило, используется одна строчка. Колонка №5 используется для записи причины отказа, в случае, когда это применимо. В колонке №6 описываются последствия каждого отказа. Остальные колонки могут отличаться в зависимости от того, какие версии FMEA применяются.

FMEA позволяет находить проблемы

Популярность метода FMEA росла на протяжении долгих лет, и он смог стать важной частью многих процессов разработки, особенно в автомобильной отрасли. Причиной этого стало то, что метод сумел продемонстрировать свою полезность и эффективность, несмотря на критику. Как бы то ни было, именно во время применения метода FMEA можно часто услышать крик вроде «О, нет», когда становится ясно, что последствия отказа того или иного компонента очень серьезны, и, главное, до этого они оставались незамеченными. Если проблема достаточно серьезна, записываются и корректирующие действия. Конструкция улучшается, для обнаружения, избегания или управления проблемой.

Применение в различных отраслях

Несколько вариантов техники FMEA используются в различных отраслях. В частности, FMEA используется для определения опасностей, которые необходимо учитывать во время проектирования нефтехимических предприятий. Эта техника отлично согласуется с другой хорошо известной техникой - Анализом опасностей и работоспособности (от англ.: Hazard and Operability Study или HAZOP). По сути, обе техники практически одинаковы, и являются вариациями списков компонентов системы в табличной форме. Основная разница между FMEA и HAZOP состоит в том, что HAZOP использует ключевые слова, чтобы помогать сотрудникам идентифицировать отклонения от нормы, в то время как FMEA основан на известных видах отказа оборудования.

Вариантом техники FMEA, используемой для анализа систем управления, является техника Анализа опасностей и работоспособности систем управления (англ.: Control Hazards and Operability Analysis или CHAZOP). В списке приведены известные виды отказов компонентов систем управления, таких как системы управления базовыми процессами, комбинации клапанов и приводов или различные преобразователи, а также записаны последствия этих отказов. Кроме того, приводятся описания корректирующих действий, в случае если отказ ведет к серьезным проблемам.

Пример использования FMEA

На этом рисунке схематически изображен упрощенный «реактор» с аварийной системой охлаждения. Система состоит из самотечного резервуара с водой, клапана управления, охлаждающего кожуха вокруг реактора, выключателя с датчиком температуры и источника питания. При нормальном режиме работы выключатель находится в активном (проводящем) положении, поскольку температура реактора находится ниже опасной зоны. Электрический ток проходит от источника через клапан и выключатель, и держит клапан в закрытом положении. Если температура внутри реактора становится слишком высокой, реагирующий на температуру выключатель размыкает цепь, и клапан управления открывается. Охлаждающая вода течет из резервуара, через клапан, затем через охлаждающий кожух и выходит через сток кожуха. Этот поток воды охлаждает реактор, понижая его температуру.

Вам нравится эта статья? Поставьте нам Like! Спасибо:)

Процедура FMEA требует создания таблицы, в которой перечислены все виды отказов для каждого из компонентов системы. Таблица «реактора» ниже служит примером использования техники FMEA, в результате которой идентифицированы критические компоненты, которые следует проверять на предмет необходимости в корректирующих действиях.

Создатель системы - несложного реактора в нашем случае - может рассмотреть возможность последовательной установки 2 выключателей, чувствительных к температуре. Можно использовать интеллектуальный преобразователь, соответствующий стандарту IEC 61508, и обладающей функцией автоматической диагностики и выходным сигналом. Сертифицированный преобразователь существенно упростит процедуру проверки, необходимую для обнаружения неисправностей. Наряду с одним стоком, можно установить второй, таким образом, засор одного из них не приведет к критическому отказу системы. Уровнемер в резервуаре может сообщить о недостаточном уровне воды. Возможно множество других изменений и усовершенствований в конструкции для предотвращения поломок.

Часть II

Эволюция метода FMEA

Метод FMEA был расширен в 70-х гг., и включил полуколичественные оценки (число от 1 до 10) серьезности, частоты происхождения и обнаружения отказов. К таблице добавили 5 колонок. Три колонки включили рейтинги, а четвертая - номер приоритета риска (от англ.: risk priority number или RPN), получаемый умножением трех чисел. Этот расширенный метод получил название «Анализ видов, последствий и критичности отказов» (от англ.: Failure Modes, Effects and Criticality Analysis или FMECA). Пример таблицы с результатами анализа FMECA по «простому реактору» показан ниже.

Техники FMEA продолжали эволюционировать. Некоторые из более поздних вариаций могут быть использованы не только для проектирования, но и для технологических процессов. Аналогично списку компонентов, создается список этапов процесса. Каждый шаг сопровождается описанием всех вариантов неправильного протекания процесса, что соответствует описанию возможных отказов того или иного компонента системы. Во всем остальном, эти вариации техники FMEA соответствуют друг другу. В литературе эти методы иногда называют «design FMEA», или DFMEA, и «process FMEA» или PFMEA. «Процессный» FMEA успешно продемонстрировал свою эффективность в обнаружении непредвиденных проблем.

Анализ отказов, их последствий и диагностики

Непрерывно развивающийся метод FMEA, кроме всего прочего, дал жизнь методу «Анализа отказов, их последствий и диагностики» (от англ.: Failure Modes Effects and Diagnostic Analysis или FMEDA). В конце 80-х гг. возникла необходимость моделировать автоматическую диагностику интеллектуальных устройств. Появилась новая архитектура на рынке контроллеров безопасности под названием «один из двух» с диагностическим выключателем (1oo2D), конкурировавшая с распространенной тогда тройной модульной архитектурой резервирования, называвшейся «два из трех» (2oo3). Поскольку безопасность и готовность новой архитектуры сильно зависели от реализации диагностики, ее количественная оценка стала важным процессом. В FMEDA это реализуется благодаря добавлению дополнительных колонок, показывающих частоту возникновения различных типов отказов и колонку с вероятностью обнаружения для каждой строки анализа.

Так же как и в случае с FMEA, в технике FMEDA перечисляются все компоненты и виды отказов, а также последствия этих отказов. В таблицу добавляются колонки, в которых перечисляются все варианты отказов системы, вероятность того, что диагностика позволит обнаружить конкретный отказ, а также, количественную оценку вероятности возникновения этого отказа. Когда анализ FMEDA завершается, высчитывается фактор «диагностического покрытия» на основе показателя частоты отказов, средневзвешенном относительно диагностического покрытия всех компонентов.

Показатели частоты отказов и распределения отказов необходимо иметь для каждого компонента, если есть необходимость провести анализ FMEDA. Поэтому требуется база данных компонентов, как видно из рисунка «Процесс FMEDA» (см. выше).

В базе данных компонентов должны быть учтены ключевые переменные, влияющие на уровень отказов компонентов. В число переменных включаются факторы окружающей среды. К счастью, существуют определенные стандарты, позволяющие характеризовать среду в процессных отраслях, благодаря чему можно создавать соответствующие профили. В таблице ниже показаны «Профили окружающей среды для процессных отраслей», взятые из второго издания Electrical and Mechanical Component Reliability Handbook, (www.exida.com).

Анализ данных по отказам полевого оборудования в FMEDA

Анализ конструкции может использоваться для создания теоретических баз данных отказов. Тем не менее, точную информацию можно получить, только если показатели частоты отказов компонентов, а также, виды отказов, основаны на данных, собранных на основе исследования реального полевого оборудования. Любая необъяснимая разница между частотами отказа компонентов, высчитанными на основе полевых данных, и на основе FMEDA, должна быть изучена. Иногда требует совершенствования процесс сбора полевых данных. Иногда может потребоваться модернизировать базу данных компонентов, дополнив ее новыми видами отказов и типами компонентов.

К счастью, некоторые сертификационные организации по функциональной безопасности изучают данные об отказах полевого оборудования при оценке большинства продуктов, благодаря чему, являются ценным источником данных о реальных отказах. В рамках некоторых проектов также собираются данные о полевых отказах с помощью конечных заказчиков. После более чем 10 млрд. часов (!) работы различного оборудования, давших огромный объем данных о видах и частоте отказов, собранный в рамках десятков исследований, сложно переоценить ценность базы компонентов FMEDA, особенно в аспекте функциональной безопасности. Итоговые данные FMEDA о продукте, как правило, используются для проверочных вычислений уровня целостности безопасности.

Техника FMEDA может использоваться для того, чтобы оценить эффективность проверочных испытаний различных функций безопасности, позволяющих определить, соответствует ли тот или иной дизайн определенному уровню целостности безопасности. Любое конкретное проверочное испытание позволяет определить те или иные потенциально опасные отказы - но не все. FMEDA позволяет определить, какие отказы определяются или не определяются проверочными испытаниями. Это реализуется добавлением другой колонки, где оценивается вероятность обнаружения каждого вида отказа компонента в ходе проверочного тестирования. При использовании этого детализированного, систематического метода становится очевидным, что некоторые потенциально опасные виды отказов не обнаруживаются во время проверочного тестирования.

Оборотная сторона медали

Основная проблема при использовании метода FMEA (или любой его вариации) это большие затраты времени. Многие аналитики жалуются на скучный и долгий процесс. Действительно, нужен строгий и сфокусированный куратор, для того, чтобы процесс анализа двигался вперед. Всегда необходимо помнить, что решение проблемы не является частью анализа. Проблемы решаются после того, как анализ будет закончен. Если следовать этим правилам, результатом станут достаточно быстрые улучшения в безопасности и надежности.

Доктор Уильям Гоббл (William Goble) является главным инженером и директором сертификационной группы по функциональной безопасности в exida, аккредитованном сертификационном органе. Более 40 лет опыта в электронике, разработке ПО и систем безопасности. Ph.D. в области количественного анализа надежности/безопасности систем автоматизации.