Водный режим почвы и восстанавливают. Оптимизация водного режима почвы и уровня минерального питания на посевах сафлора в предгорной зоне казахстана. Контрольные вопросы и задания


Атакулов Т., Ержанова., Алкенов Е.

УДК. 631.587.

ОПТИМИЗАЦИЯ ВОДНОГО РЕЖИМА ПОЧВЫ И УРОВНЯ МИНЕРАЛЬНОГО ПИТАНИЯ НА ПОСЕВАХ САФЛОРА В ПРЕДГОРНОЙ ЗОНЕ КАЗАХСТАНА

Тастанбек Атакулов, д-р с.-х. наук, проф.
Кенже Ержанова, канд. с.-х. наук, доцент
Ельтай Алкенов, докторант (PhD)
Казахский национальный аграрный университет

В статье приводятся данные о влиянии режима орошения и уровня минерального питания на продуктивность сафлора в предгорной зоне Казахстана.

Ключевые слова: сафлор, режим орошения, минеральное питание, водопотребление, засоление, урожайность.

The article presents data on the effect of irrigation regime and the level of mineral nutrition on the productivity of safflower in the foothills of Kazakhstan.
Key words: safflower, mode of irrigation, mineral nutrition, water consumption, salinity, productivity.

В последние годы, орошаемые земли Казахстана используются не эффективно. Основной причиной этого, наряду с не соблюдением агротехнических приемов и ухудшением технического состояния оросительных систем, является засоление.

Переход на рыночную экономику, отсутствие капитальных вложений на строительство и реконструкцию оросительных систем побудили к поиску более дешевых и приемлемых путей улучшения мелиоративного состояния почв.

Одним из способов оздоровления засоленных и солонцовых земель - возделывание фитомелиорантов, которые улучшают физико-химические, мелиоративные условия земель и дают высокие урожаи кормовых (масличных) культур. Кроме этого, их выращивание очень благоприятно влияет на экологию и экономически эффективно, так как малозатратно .

Учитывая эти преимущества, мы с 2003 года проводили НИР по выявлению лучших фитомелиорантов для оздоровления засоленных и солонцовых земель в условиях предгорной зоны Заилийского Алатау и установили, что сафлор является хорошим фитомелиорантом.

Сафлор относится к засухоустойчивым культурам, но результаты наших опытов показывают, что в условиях предгорной зоны эта культура испытывает недостаток влаги в период цветения и плодообразования. Поэтому с 2005 г. мы продолжили полевые опыты по изучению режима орошения и уровня минерального питания сафлора.

Опытные участки были расположены на территории УОС «Агроуниверситет» на лугово-каштановых среднезасоленных почвах. В начале вегетации определены водно-физические и химические свойства почвы. Повторность опыта 3-кратная, учетная площадь делянок - 48 м 2 . Были приняты следующие варианты оптимального режима орошения фитомелиоранта сафлора:

I. Без полива (контроль)

II. 60-60-60% от НВ

III. 60-70-60% от НВ

IV. 70-80-70% от НВ

Указанные выше варианты располагались рендомезированным методом. При составлении схемы опыта и плановом размещении вариантов руководствовались «Методикой полевого опыта» .

Соблюдение различных порогов предполивной влажности почвы позволило установить сроки и нормы поливов сафлора.

Результаты наших исследований показали, что по мере повышения порога предполивной влажности почвы поливная норма сафлора снижается, число поливов и оросительная норма возрастает. Поливную норму рассчитывали по общеизвестной формуле А.Н.Костякова.

Для поддержания влажности почвы на уровне 60-60-60% от НВ - был проведен 1 полив с поливной нормой 800-810 м 3 /га.

Для поддержания влажности почвы на уровне 60-70-60% от НВ были осуществлены 2 полива с поливной нормой 800-820 м 3 /га, оросительная норма колебалась в пределах 1610-1620 м 3 /га.

В IV варианте для поддержания влажности почвы на уровне 70-80-70% от НВ потребовалось проведение 3 поливов с поливной нормой 500-600 м 3 /га, при этом оросительная норма изменялась в пределах 1780-1880 м 3 /га.

Таким образом, для соблюдения установленной схемы опытов проводили 1-3 полива, с оросительной нормой 720-1880 м 3 /га.

Суммарное водопотребление сафлора по вариантам изменялось в широких пределах - от 2799 до 3017 м 3 /га. Удельный вес оросительной воды в водообеспеченные годы изменяется от 26 до 47%. В засушливые годы роль оросительной воды значительно возрастает и доходит до 45-50%.

Поддержание влажности почвы на различном уровне оказало влияние на рост, развитие и урожайность сафлора. Так, в I варианте его урожайность была 9,6 ц/га, во II и III - соответственно 14,0 и 18,1 ц/га. Корзинок с 1 растения было 10-16 шт/м 2 , масса семян с корзинки - 6-17 г. (таблица 1).

Таблица 1 - Урожайность сафлора при различных режимах орошения (среднее за 2005-2008 гг.)

№ п/п

Варианты

Урожайность, ц/га

Прибавка от водного режима

Выход урожая на 1000 м 3 /ц

Без полива (контроль)

9,6

60-60-60% от НВ

14,0

4,4

5,6

III

60-70-60% от НВ

18,1

8,5

5,4

70-80-70% от НВ

19,5

9,9

5,3

По данным таблицы, можно сделать вывод, что с повышением порога предполивной влажности почвы урожайность сафлора увеличивается, но при чрезмерном увеличении влажности интенсивность ее роста и урожайность особо не увеличивается.

В Казахстане проведены обстоятельные исследования по разработке научных основ применения удобрений. Достаточно детально изучены агрохимические свойства пахотных почв, на основе многолетних исследований научных учреждений и опытных станций подготовлены рекомендации по применению удобрений под зерновые, кормовые, технические и овощные культуры. Однако вопросы применения минеральных удобрений под орошаемые сельскохозяйственные культуры обычно рассматриваются без учета режимов их орошения. В свою очередь, при изучении поливных режимов обходят вниманием оптимизацию минерального питания растений. Орошение сельскохозяйственных культур и применение удобрений - это единая система орошаемого земледелия. Эта система должна опираться на единые научно-обоснованные рекомендации, которые должны быть разработаны с учетом специфических особенностей почвенных и климатических условий, природных зон, а также биологических особенностей возделываемых культур и особенностей зональной технологии их возделывания .

Известно, что при повышении концентрации почвенного раствора, почвенная влага становится менее доступной растениям. Следовательно, чем выше применяемые дозы удобрений, тем больше должен быть уровень увлажнения почвы.

Поступление элементов питания и воды в растения происходит неравномерно и значимость полного обеспечения его пищей и водой в различные периоды жизни далеко не одинакова. Регулируя пищевой и водный режимы, необходимо учитывать, так называемые, критические периоды водоснабжения и периоды максимальной эффективности питания. Например: у яровой пшеницы критическим периодом в питании является время от кущения до колошения, а у сафлора - фаза бутонизации, то есть начало цветения, когда развиваются генеративные органы. Недостаток влаги в этот период роста и развития растений приводит к нарушению жизненного цикла растений.

В силу закона совокупного взаимодействия факторов жизни при обильном увлажнении, влияние удобрений оказывается эффективнее, чем при ограниченном запасе воды. Более того, при лучшей обеспеченности почвы водой в 10-15 раз увеличивается перевод элементов питания из труднодоступных форм в воднорастворенное - доступное состояние .

Многочисленные опыты с удобрениями, проведенные в условиях орошения, показывают, что для получения высоких урожаев требуется оптимальное сочетание удобрений и режима орошения, а именно: более высокому уровню увлажнения почв соответствуют повышенные нормы удобрений.

Также с 2005 года нами проводились полевые опыты по разработке оптимальных режимов орошения сафлора на фоне различных доз минеральных удобрений. Результаты опытов приведены в таблице 2.

Таблица 2 - Влияние режимов орошения и норм минеральных удобрений на урожайность сафлора (среднее за 2005-2008 гг.)

Варианты опыта

Без удобрений

N 30 P 60 K 30

N 60 P 90 K 60

N 90 P 120 K 90

ц/га

Прибавка урожая от удобрений

ц/га

Прибавка урожая от удобрений

ц/га

Прибавка урожая от удобрений

ц/га

ц/га

ц/га

ц/га

60-60-60% от НВ

14,0

16,6

2,6

18,5

17,5

4,7

26,8

19,3

5,3

27,4

60-70-60% от НВ

18,1

22,0

3,9

21,5

23,2

5,1

28,1

25,0

6,9

27,6

70-80-70% от НВ

19,5

23,4

3,9

24,8

5,3

27,1

26,2

6,7

25,5

Анализ приведенных в таблице данных показывает, что с повышением порога предполивной влажности почвы и дозы удобрений урожайность сафлора увеличивается. Однако можно заметить, что с повышением порога предполивной влажности почвы до 80% от НВ процент прибавки урожая снижается. Такая же закономерность наблюдается с увеличением доз удобрений.

Различный режим увлажнения почвы оказал свое влияние на содержание солей в почве в конце вегетации сафлора. Прослеживается закономерность, что с повышением порога предполивной влажности почвы от 60% до 80% от НВ процент уменьшения солей увеличивается. Поддержание влажности почвы на высоком уровне приводит к интенсивному растворению солей и увеличивает их подвижность, в результате чего часть солей усваиваются сафлором, а часть просачивается в нижележащие горизонты почвы.

В наших опытах за период мелиорации произошло значительное улучшение солевого режима, особенно на вариантах с повышенными порогами предполивной влажности почвы, что способствовало получению хороших урожаев семян.

Основные выводы: Для оптимального роста и развития сафлора необходимо поддерживать влажность почвы не ниже 70% от НВ, для чего необходимо в течение вегетационного периода проводить 2-3 полива с нормой 650-750 м 3 /га.

С повышением порога предполивной влажности почвы от 60-80% от НВ под посевами сафлора процент уменьшения солей увеличивается, то есть сафлор - как фитомелиорант оказывает рассоляющее действие на почву.

Литература:

  • 1. Атакулов Т.А. Рациональное использование земельных и водных ресурсов восточного и юго-восточного Казахстана при орошении Алматы, 1995
  • 2. Доспехов Методика опытного дела, 1971
  • 3. Балябо Н.К., Васильев С.Г. Результаты применения удобрений в новых районах орошаемого земледелия. В сб. Эффективность удобрений на орошаемых землях, 1967.
  • 4. Технология возделывания сафлора на маслосемена в условиях юго-востока Казахстана. (Рекомендации), Алматы, 2003.

Ваша оценка: Нет Средняя: 8 (4 голоса)

План лекции :

1. Вода – незаменимый фактор формирования урожая;

2. Продуктивная влага и ее определение;

3. Использование расчетного водопотребления для программирования урожаев;

4. Определение действительно возможной урожайности по биогидротермическому потенциалу.

1. Вода - незаменимый фактор формирования урожая

Для растения вода имеет первостепенное значение. Цитоплазма на 85 – 90 % состоит из воды. Без воды не протекают биохимические процессы, прекращается жизнедеятельность растительного организма.

Вода необходима растению во все периоды жизни; потребность в воде только для прорастания семян составляет примерно 30 – 100 % их веса, дальнейшем на образование 1 г сухого органического вещества растениям требуется от 200 до 1000 г воды. Количество воды в граммах, израсходованное на накопление растением 1 г сухого вещества, называется транспирационным коэффициентом. При этом незначительная часть (менее 5 %) поглощенной растениями воды участвует в процессе фотосинтеза и образует органическое вещество, а остальная идет на транспирацию.

Потребность растений в воде зависит от многих условий: от биологических особенностей самих растений, почвы, уровня и количества удобрений, агротехнических и мелиоративных мероприятий.

Источником воды для возделываемых растений могут быть атмосферные осадки, грунтовые воды, воды орошения. Определяющее значение, безусловно, имеет количество атмосферных осадков. Учет уровня влагообеспеченности, наряду с показателями теплообеспеченности, необходим при районировании территории, организации орошения и осушения, для установления величины климатически обеспеченного урожая.

Практически всю воду растения поглощают из почвы, при этом различные культуры предъявляют неодинаковые требования к запасам воды в почве, что следует учитывать при определении агротехнических и гидромелиоративных мероприятий для выращивания запрограммированных урожаев.

Находящаяся в почве вода по-разному связана с твердыми почвенными частицами, что определяет степень её подвижности и доступности растениям.

Обычно выделяют следующие формы воды в почве :

1. Парообразная вода - содержится в виде водяного пара в почвенном воздухе, нередко насыщая его до 100 %, передвигается от мест с большей упругостью в места с меньшей упругостью водяных паров, в снабжении растений водой значения практически не имеет.

2. Кристаллизационная вода - входит в состав минералов, неподвижна, растениям недоступна.

3. Прочносвязанная (гигроскопическая) вода - образуется в результате адсорбции почвенными коллоидными частицами водяных паров из воздуха, покрывает эти частицы тонкими (слой в 1 - 3 молекулы) пленками, растениям недоступна. Максимальное количество гигроскопической воды, которое может поглотить и удержать почва, будучи помещена в атмосферу, насыщенную водяными парами (около 96 %), называется максимальной гигроскопичностью (МГ). Величина МГ позволяет определить обеспеченность растений водой: обычно полуторная - двойная максимальная гигроскопичность соответствует влажности устойчивого завядания растений (ВЗ), или «мертвому запасу» воды в почве, и учитывается при расчете норм полива.

4. Рыхлосвязанная (пленочная) вода - образует вокруг почвенных частиц толстые (слой в несколько десятков молекул) пленки, удерживается на поверхности частиц в основном силой ориентированных молекул воды, слабо подвижна и малодоступна для растений.

5. Свободная вода (капиллярная и гравитационная) - передвигается под действием капиллярных и гравитационных сил.

Капиллярная вода - в капельно-жидком состоянии находится в капиллярах почвы, растениям доступна. Это наиболее благоприятная для растений форма почвенной влаги. Различают капиллярно-подвешенную и капиллярно-подпертую воду. Максимальное количество капиллярно-подвешенной влаги называется наименьшей, или предельной полевой влагоемкостью (НВ или ППВ), а капиллярно-подпертой - капиллярной влагоемкостью (КВ).

Гравитационная вода - занимает все некапиллярные промежутки между агрегатами (поры, пустоты) в почве, вытесняя воздух, растениям доступна, но, создавая анаэробные условия, вызывает угнетение, гибель растений из-за недостатка кислорода воздуха, заболачивание почвы. Наибольшее количество воды, которое содержится в почве при заполнении всех ее пор, пустот, называется полной влагоемкостью (ПВ).

Регулирование водного режима при выращивании запрограммированных урожаев сельскохозяйственных культур на различных по увлажнению территориях осуществляют, используя комплекс технологических, arpo - и лесомелиоративных, гидромелиоративных (осушение, орошение) и других приемов. Количество и распределение атмосферных осадков, величина гидротермического коэффициента, а также нормы поливов учитываются при планировании урожайности сельскохозяйственных культур.

Действительно возможный урожай - это урожай, который теоретически может быть обеспечен генетическим потенциалом сорта или гибрида и основным лимитирующим фактором. ДВУ всегда ниже ПУ. Определяют ДВУ по следующей формуле:

УДВУ=http://po-teme.com.ua/images/adIIIin/image002_0_afbb2d280dcb85738c05a012d07de943.gif" alt="" width="29" height="29 src=">

где, W - количество продуктивной для растений влаги, мм; Кв - коэффициент водопотребления, мм - га/ц.

Коэффициент водопотребления (Кв) - количество влаги, затрачиваемое на формирование единицы сухой биомассы. Размерность (мм га/ц) взята произвольно. Этот коэффициент специфичен для каждой культуры и меняется в зависимости от климатических особенностей вегетационного периода, уровня почвенного плодородия, доз удобрений и других факторов. В частности, в определенных пределах справедливо утверждение, что растение затрачивает на создание единицы сухого вещества тем меньше воды, чем полнее удовлетворяются его потребности в других факторах жизнеобеспеченности. Чем ниже уровень агротехники и почвенного плодородия, тем коэффициент водопотребления в среднем выше. При отсутствии данных, которые отвечают условиям хозяйства (или еще лучше - поля, участка), можно пользоваться средними коэффициентами водопотребления. Для озимых пшеницы, ржи, ячменя, овса, а также для картофеля этот коэффициент равен 350 - 400, для кормовой свеклы, моркови, капусты, кукурузы, викоовсяной смеси на зеленый корм - 300 - 400, для многолетних трав на сено - 500 - 700.

2. Продуктивная влага и ее определение.

Количество продуктивной влаги определяют по данным выпадаемых в течение года осадков. Для этого месячные суммы осадков по агроклиматическим районам области суммируют и вычитают из полученной суммы непроизводительные расходы влаги.

Годовое количество осадков не полностью используется растениями. Непроизводительные расходы влаги бывают за счет стока с талыми водами и во время ливневых осадков с полей, имеющих значительный уклон, а также испарения с поверхности почвы, не занятой растениями. По обобщенным данным, использование годового количества осадков на различных по механическому составу почвах колеблется от 42 до 88%. Остальные 12 - 58% составляют непроизводительные расходы. Болотные почвы обладают большей влагоемкостью, чем другие типы, и в них накапливается больше продуктивной влаги. Песчаные почвы имеют низкую влагоемкость, в них содержится лишь 42 - 48% влаги от годового количества осадков. Различная влагоемкость почв обусловливает и значительные колебания продуктивной влаги по агроклиматическим районам Московской области.

Из-за неравномерности выпадающих осадков по территории области расчет действительно возможных урожаев по влагообеспеченности следует проводить дифференцированно для каждого хозяйства, а в дальнейшем и для каждого поля с учетом почвенных особенностей и рельефа местности. Следует отметить, что на нижней трети склона содержание влаги в почве всегда будет на 30% выше, чем на возвышенных полях. Такими же условиями влагообеспеченности обладают и пойменные почвы.

Часто достоверные данные по урожайности получают, когда продуктивную влагу определяют как сумму: запасы доступной для растений влаги в метровом слое почвы в период сева или возобновления активной вегетации озимых культур и многолетних трав (\¥0) плюс влага осадков (Ос), которые выпадают за вегетационный период культуры.

Количество продуктивной для растений влаги рассчитывают по формуле

W = W 0 + ОС

Например, к моменту возобновления вегетации озимой пшеницы в метровом слое суглинистых дерново-подзолистых почв содержится 212 мм продуктивной влаги (Wо). За период с третьей декады апреля по 1 августа в этом районе выпадает в среднем 220 мм осадков. Подставляя эти значения в формулу, определяют, что в большинстве лет на участках под пшеницей за вегетационный период накапливается 432 мм продуктивной влаги (W). Этот показатель близок к тому, который приведен в таблице.

Продуктивная влага для растений - один из важнейших показателей урожайности. Поэтому ее используют для определения ДВУ.

1. Использование расчетного водопотребления для программирования урожаев.

Для ряда районов причиной низких урожаев сельскохозяйственных культур является превышение расходов влаги почвой и растениями (суммарное водопотребление) над приходом ее с осадками. При программировании урожая наиболее важным и сложным моментом является определение водопотребления с целью установления дефицита водного баланса.

Режим потребления воды растениями (Алпатьев, 1954) необходимо рассматривать с учетом двух взаимосвязанных факторов: в связи с ритмами развития растений и с учетом влияния экологических факторов.

Суммарное водопотребление выражается формулой

Е = Еисп + E тр.,

где, Еисп - испарение воды почвой, мм; Етр - расход воды на транспирацию, мм.

Соотношение между указанными величинами постоянно меняется и зависит от густоты стояния растений, техники полива, механического состава почвы, прихода солнечной радиации и т. д.

С целью расчета потребности растений в воде используют коэффициент водопотребления, который является отношением суммарного водопотребления (эвапотранспирация) к величине урожая:

K = Е/У м3/т,

где, Е - эвапотранспирация за период вегетации, м3/га; У - величина урожая, т/га.

Применяются следующие модификации коэффициента водопотребления (Кв):

фазовый коэффициент водопотребления - Квф = ∑Eв/∆Уф

биологический коэффициент водопотребления - Квб = ∑Ев/Убиол.

продуктивный коэффициент водопотребления - Квт = ∑Ев/У хоз

где ∑Ев - расход воды на суммарное испарение за период, фазу или вегетацию; ∆Уф - прирост вегетативной массы за период фазы; Убиол. - масса биологического урожая за период вегетации; Ухоз - масса товарной (хозяйственной) части урожая.

В свою очередь суммарное водопотребление определяют по формуле

Е = Кв∙У,

где: Е - суммарное водопотребление за период вегетации, м3/га; Кв - коэффициент водопотребления, м3/т; У - расчетная (планируемая) величина урожайности, т/га.

Например, при Кв = 550 м3/т и планируемой величине урожайности зерна 5 т/га суммарное водопотребление составит Е = 550 5 = 2750 м3/га.

Коэффициент водопотребления любой сельскохозяйственной культуры зависит от ряда факторов: он уменьшается или увеличивается в зависимости от уровня всего комплекса агротехники, в том числе от режима орошения, минерального питания, содержания междурядий у пропашных культур, от сорта и т. д.

Пример расчета орошения рассмотрим по рекомендациям по выращиванию урожаев зерна кукурузы при орошении. В связи с повышенной требовательностью к теплу и свету и высокой транспирацией кукуруза очень отзывчива на орошение. Суммарное водопотребление ее на программируемый урожай определяется по формуле

где Е - суммарное водопотребление, м3/га; Кв - коэффициент водопотребления, м3/ц; У - программируемый урожай, ц/га.

При программируемой урожайности зерна 100 ц/га и коэффициенте водопотребления 50 - 60 суммарное водопотребление составит Е = 60 -100 = 6000 м3/га. Для условий Кубани потребность кукурузы в воде на 45 - 50% обеспечивается атмосферными осадками и запасом продуктивной влаги в почве.

Нормы и сроки поливов определяются по влажности почвы:

n = 100 h а (ППВ-В)

где: n - поливная норма, м3/га; h - активный слой почвы, м; а - объемная масса почвы, г/см3; ППВ - предельная поливная влажность к массе абсолютно сухой почвы, %; В - влажность почвы перед поливом к массе абсолютно сухой почвы, %.

Наиболее активный корнеобитаемый слой почвы для кукурузы составляет 0,6 - 0,7 м. Для поддержания оптимальной влажности не ниже 75 – 80 % от ППВ (НВ) в указанном горизонте необходимо четыре - шесть поливов с нормой 500 - 600 м3/га.

4. Определение действительно возможной урожайности по биогидротермическому потенциалу

Существует тесная связь между приходом солнечной радиации, коэффициентом скрытой теплоты испарения и необходимым количеством воды, на основании которой можно рассчитать величину урожая.

Солнечная радиация, влагообеспеченность и почвенные условия составляют единый комплекс по влиянию на величину урожая. A. M. Рябчиков предложил формулу, которая позволяет определить продуктивность фитомассы:

Кр= WTν /36 R

где, Кр - биогидротермический потенциал продуктивности, балл; W - запас продуктивной влаги, мм; 36 - число декад в году; R - радиационный баланс за этот период (ккал/см); Tv - период вегетации (декады).

Основные показатели, входящие в эту формулу, находят в сборниках «Агроклиматические ресурсы» и для каждого конкретного случая определяют потенциальные климатические возможности местности в формировании урожаев биомассы.

Например, в Московской области посевы озимой пшеницы имеют запас продуктивной влаги 420 мм, радиационный баланс за период вегетации составляет 25,5 ккал/см2, число декад от весеннего отрастания до созревания 10.

Подставив эти значения в формулу, получим Кр = 420∙10/36∙25,5 = 4,5 балла.

Рассчитав балл продуктивности фитомассы по графику, находим величину биологической массы, которая составляет 11,5 т/га, при влажности 14 % - 13,11 т/га, при соотношении зерна к соломе 1:1,5 урожайность зерна составит 5,24 т/га.

Вода в почве - один из важнейших факторов плодородия и урожайности растений. В почвенных процессах, в создании агрономически важных свойств почвы она играет значительную и разностороннюю роль. Эта роль определяется особым положением воды в природе.

Вода - это особая физико-химическая весьма активная система, обеспечивающая перемещение веществ в пространстве. С содержанием воды в почве связаны скорость выветривания и почвообразования, гумусообразование, биологические, химические и физико-химические процессы. В воде растворяются питательные вещества, которые из почвенного раствора поступают в растения. Поскольку при испарении воды затрачивается огромное количество тепла, вода является и терморегулятором почвы и растений, предохраняя их от перегрева солнечной радиацией.

Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении. Главным источником воды в почве в условиях неорошаемого земледелия являются атмосферные осадки.

В составе растений содержится 80-90 % воды. В процессе своей жизнедеятельности они тратят огромное ее количество. Для создания 1 г сухого вещества требуется от 200 до 1000 г воды. При недостатке воды в почве формируются неустойчивые и низкие урожаи сельскохозяйственных культур.

Водообеспеченность растений зависит не только от количества поступающей воды в почву, но и от ее водных свойств. При равной абсолютной влажности почвы могут содержать разное количество доступной воды, что обусловлено гранулометрическим составом почв, структурным состоянием, содержанием гумуса и другими показателями, определяющими их водные свойства.

Познание закономерностей поведения почвенной влаги, процессов водопотребления растениями, водных свойств и водного режима имеет большое значение для управления и оптимизации водного режима с целью получения высоких и устойчивых урожаев сельскохозяйственных культур.

В изучение закономерностей взаимосвязей между водой, почвой и растением большой вклад внесли А. А. Измаильский, Г. Н. Высоцкий, П. С. Коссович. Основы учения о водных свойствах почв и водных режимах изложены в трудах А. Ф. Лебедева, С. И. Долгова, А. Н. Роде, Н. А. Качинского и других ученых.

КАТЕГОРИИ (ФОРМЫ) ПОЧВЕННОЙ ВОДЫ, ИХ ХАРАКТЕРИСТИКА И ДОСТУПНОСТЬ РАСТЕНИЯМ

Вода в почвах неоднородна. Разные ее количества имеют неодинаковые физические свойства (термодинамический потенциал, теплоемкость, плотность, вязкость, химический состав, осмотическое давление и т. д.), обусловленные взаимодействием молекул воды между собой и с другими фазами почвы (твердой, жидкой, газообразной). Количества почвенной воды, обладающие одинаковыми свойствами, получили название категорий или форм почвенной воды.

Согласно классификации, разработанной А. А. Роде (1965), в почвах различают пять категорий (форм) почвенной воды: твердую, химически связанную, парообразную, сорбированную и свободную.

Твердая вода - лед. Эта категория воды является потенциальным источником жидкой и парообразной воды. Появление воды в форме льда может иметь сезонный (сезонное промерзание почвы) или многолетний («вечная» мерзлота) характер. Лед переходит в жидкое и парообразное состояние при температуре воды выше 0°С.

Химически связанная вода входит в состав химических соединений (минералов) в виде гидроксильной группы - так называемая конституционная вода или целыми молекулами - кристаллизационная вода (CaSO 2Н 2 О, Na 2 SO 4 10Н 2 О).

Конституционную воду удаляют из почвы прокаливанием при температуре 400-800 ˚С, кристаллизационную - при нагревании почвы до 100-200 °С. Химически связанная вода -важный показатель состава почвы; она входит в состав твердой фазы почвы и не является самостоятельным физическим телом, не передвигается, не обладает свойствами растворителя и недоступна растениям.

Парообразная вода содержится в почвенном воздухе, в порах, свободных от воды, в форме водяного пара. Парообразная влага может передвигаться вместе с током почвенного воздуха, а также диффузно из мест с большей упругостью водяного пара в места с меньшей упругостью.

Несмотря на то что общее количество парообразной воды не превышает 0,001 % массы почвы, она играет большую роль в перераспределении почвенной влаги и предохраняет корневые волоски растений от пересыхания.

Конденсируясь, пар переходит в жидкую воду. В почве парообразная влага передвигается от теплых слоев к более холодным. В связи с этим возникают восходящие и нисходящие сезонные и суточные потоки водяного пара. За счет восходящего передвижения водяного пара в зимнее время в метровом слое почвы засушливых районов аккумулируется до 10-14 мм влаги.

Физически связанная, или сорбированная, вода образуется путем сорбции парообразной и жидкой воды на поверхности твердых частиц почвы. Физически связанную воду в зависимости от прочности связи с твердой фазой почвы подразделяют на прочносвязанную и рыхлосвязанную (пленочную).

Прочносвязанная (гигроскопическая) вода образуется в результате адсорбции молекул воды из парообразного состояния на поверхности твердых частиц почвы. Свойство почвы сорбировать парообразную воду называют гигроскопичностью почв, а сорбированную воду - гигроскопической. Прочносвязанная гигроскопическая вода удерживается на поверхности почвенных частиц очень высоким давлением, образуя вокруг почвенных частиц тончайшие пленки.

По физическим свойствам гигроскопическая вода приближается к твердым телам. Она обладает высокой плотностью (1,5-1,8 г/см 3), низкой электропроводностью, не растворяет вещества, отличается повышенной вязкостью, замерзает при температуре от -4 до -78 °С, недоступна растениям.

Предельное количество воды, которое может быть поглощено почвой из парообразного состояния при относительной влажности воздуха, близкой к 100 %, называют максимальной гигроскопической (МГ) водой. При влажности почвы, равной МГ, толщина пленки из молекул воды достигает 3-4 слоев.

Величины гигроскопичности и МГ зависят от гранулометрического и минералогического составов, содержания гумуса. Чем больше в почве илистой, особенно коллоидной, фракции и гумуса, тем выше гигроскопичность и МГ.

В минеральных слабогумусированных песчаных и супесчаных почвах максимальная гигроскопичность колеблется от 0,5 до 1 %. В сильногумусированных суглинистых и глинистых почвах максимальная гигроскопичность может составлять 15-16%, а в торфах – до 30-50 %.

Однако за счет поглощения парообразной воды сорбционные силы поверхности почвенных частиц не исчерпываются, даже если влажность почвы достигает максимальной гигроскопичности. При соприкосновении частиц почвы с водой происходит дополнительное ее поглощение и образуется рыхлосвязанная, или пленочная, вода. Она удерживается почвенными частицами менее прочно, очень медленно передвигается от почвенных частиц с большей пленкой к частицам с меньшей пленкой. Толщина пленки достигает нескольких десятков молекул воды и может превышать величину максимальной гигроскопичности в 2-4 раза. Пленочная влага имеет плотность несколько выше плотности свободной воды, обладает пониженной растворяющей способностью, замерзает при температуре -1,5...-4 °С, частично доступна для растений.

Свободная вода - это вода, содержащаяся в почве сверх рыхлосвязанной. Она не связана силами притяжения с почвенными частицами. Различают две формы свободной воды в почве: капиллярную и гравитационную.

Капиллярная вода находится в тонких капиллярных порах почвы и передвигается в них под влиянием капиллярных сил, возникающих на поверхности раздела твердой, жидкой и газообразной фаз. Эта вода наиболее доступна растениям.

В зависимости от характера увлажнения различают капиллярно-подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху атмосферными осадками или оросительными водами формируется капиллярно-подвешенная вода. При увлажнении почвы снизу за счет грунтовых вод в почве образуется капиллярно-подпертая вода. Зону капиллярного насыщения над грунтовой водой называют капиллярной каймой (КК).

Гравитационная вода размещается в крупных некапиллярных порах, свободно просачивается вниз по профилю под действием силы тяжести. Различают гравитационную воду просачивающуюся и влагу водоносных горизонтов. Последняя над водоупорным слоем образует почвенные и грунтовые воды, а также временный горизонт верховых вод.

ВОДНЫЕ СВОЙСТВА ПОЧВ

Основными водными свойствами почв являются водоудерживающая способность, водопроницаемость и водоподъемная способность.

Водоудерживающая способность - свойство почвы удерживать воду, обусловленное действием сорбционных и капиллярных сил. Наибольшее количество воды, которое способна удерживать почва теми или иными силами, называется влагоемкостью.

В зависимости от того, в какой форме находится удерживаемая почвой влага, различают полную, наименьшую, капиллярную и максимально-молекулярную влагоемкость.

Полная (максимальная) влагоемкость (ПВ), или водовместимость, - это количество влаги, удерживаемое почвой в состоянии полного насыщения, когда все поры (капиллярные и некапиллярные) заполнены водой.

Для почв нормального увлажнения состояние влажности, соответствующее полной влагоемкости, может быть после снеготаяния, обильных дождей или при поливе большими нормами воды. Для избыточно влажных (гидроморфных) почв состояние полной влагоемкости может быть длительным или постоянным.

При длительном состоянии насыщения почв водой до полной влагоемкости в них развиваются анаэробные процессы, снижающие ее плодородие и продуктивность растений. Оптимальной для растений считается относительная влажность почв в пределах 50-60 % ПВ.

Однако в результате набухания почвы при ее увлажнении, наличия защемленного воздуха полная влагоемкость не всегда точно соответствует общей пористости почвы.

Наименьшая влагоемкость (НВ) - это максимальное количество капиллярно-подвешенной влаги, которое способна длительное время удерживать почва после обильного ее увлажнения и свободного стекания воды при условии исключения испарения и капиллярного увлажнения за счет грунтовой воды.

При НВ в почве 55-75 % пор заполнено водой, создаются оптимальные условия влаго- и воздухообеспеченности растений. Величина НВ зависит от гранулометрического состава, содержания гумуса и сложения почвы. Чем тяжелее почва по гранулометрическому составу, чем больше в ней гумуса, тем выше ее наименьшая влагоемкость. Очень рыхлая и сильноплотная почвы имеют меньшую влагоемкость (НВ), чем почвы средней плотности. Для суглинистых и глинистых почв величина НВ колеблется от 20 до 45 % абсолютной влажности почв. Наибольшие значения НВ характерны для гумусированных почв тяжелого гранулометрического состава с хорошо выраженной макро- и микроструктурой.

По мере испарения и потребления воды растения теряют сплошное заполнение водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, соответствующая разрыву капилляров, называется влажностью разрыва капилляров (ВРК). Это гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65-70 % НВ.

Максимальное количество капиллярно-подпертой влаги, которое может содержаться в почве над уровнем грунтовых вод, называется капиллярной влагоемкостью (KB).

Максимальная молекулярная влагоемкость (ММВ) соответствует наибольшему содержанию рыхлосвязанной воды, удерживаемой сорбционными силами или силами молекулярного притяжения.

При влажности, близкой к ММВ, растения обычно начинают устойчиво завядать, поэтому такую влажность называют влажностью завядания (ВЗ) или «мертвым», недоступным для растений запасом влаги в почве. Для разных растений, а также разных периодов их роста (проростки или зрелые растения) влажность завядания будет неодинакова. Особенно чувствительны к критическому состоянию влажности почвы проростки.

Влажность завядания растений определяют методом проростков по С. И. Долгову или расчетным способом, используя процентное содержание воды в почве, равное максимальной гигроскопической влаге. При этом учитывают, что отношение влажности завядания к максимальной гигроскопической влаге в разных почвах для разных растений колеблется от 1 до 3, для незасоленных почв оно чаще составляет 1,3-1,5, для засоленных - несколько выше. Влажность завядания (в %) равна максимальной гигроскопической влажности (в%), умноженной на коэффициент 1,34 (по рекомендации гидрометеослужбы) или 1,5 (по рекомендации Н. А. Качинского):

В3= МГ × 1,34 (1,5).

Влажность завядания различается в зависимости от типа почв и гранулометрического состава (табл. 33).

33. Влажность завядания в почвах разного гранулометрического состава

(по данным Францессона)

В торфяных почвах влажность завядания достигает 50 % массы абсолютно сухой почвы.

Влажность завядания представляет важнейшую гидрологическую константу. На основании данных ВЗ и общего содержания влаги в почве вычисляют запас продуктивной влаги, т. е. той влаги, которая доступна для растений и расходуется на формирование урожая.

Количество продуктивной влаги принято выражать в мм толщины водяного слоя. В таком виде запасы воды лучше сопоставлять с данными по осадкам. 1 мм воды на площади 1 га соответствует 10 т воды.

Запасы продуктивной влаги (в мм/га):

W=0,l×d v ×h(B-B3),

где 0,1 - коэффициент перевода запасов влаги из м 3 /га в мм водяного слоя; d v - плотность почвы, г/см 3 ; h - мощность слоя почвы, см, длят которого рассчитывается запас продуктивной влаги; В - полевая влажность почвы, % на абсолютно сухую почву; ВЗ- влажность завядания, % на абсолютно сухую почву.

Оптимальные запасы продуктивной влаги (по А. М. Шульгину) в метровом слое почвы в период вегетации растений находятся в среднем в пределах от 100 до 200 мм.

Как избыточная влажность (более 250 мм), так и недостаточная (менее 50 мм) отрицательно сказываются на развитии растений и их урожайности.

Водопроницаемость почв - способность почв впитывать и пропускать через себя воду. Различают две стадии водопроницаемости: впитывание и фильтрацию. Впитывание - это поглощение воды почвой и ее прохождение в не насыщенной водой почве. Фильтрация (просачивание) - передвижение воды в почве под влиянием силы тяжести и градиента напора при полном насыщении почвы водой. Эти стадии водопроницаемости характеризуются соответственно коэффициентами впитывания и фильтрации.

Водопроницаемость измеряется объемом воды (мм), протекающей через единицу площади почвы (см 2) в единицу времени (ч) при напоре воды 5 см.

Величина эта очень динамична, зависит от гранулометрического состава и химических свойств почв, их структурного состояния, плотности, порозности, влажности.

В почвах тяжелого гранулометрического состава водопроницаемость ниже, чем в легких; присутствие в ППК поглощенного натрия или магния, способствующих быстрому набуханию почв, делает почвы практически водонепроницаемыми.

Оценку водопроницаемости почв проводят по шкале, предложенной Н. А. Качинским (1970).

При недостаточной водопроницаемости влага или застаивается на поверхности почвы, создавая условия для вымочек посевов, или стекает по уклону местности, способствуя проявлению водной эрозии.

При очень высокой водопроницаемости влага не накапливается в корнеобитаемом слое, быстро фильтруется в глубь почвенного профиля, в условиях орошаемого земледелия происходят потери поливной воды, подъем уровня грунтовых вод и возникает опасность вторичного засоления почв.

Водоподъемная способность - свойство почвы вызывать восходящее передвижение содержащейся в ней воды за счет капиллярных сил.

Высота подъема воды в почвах и скорость ее передвижения определяются в основном гранулометрическим и структурным составами почв, их порозностью.

Чем почвы тяжелее и менее структурны, тем больше потенциальная высота подъема воды, а скорость подъема ее меньше.

На скорость подъема воды влияет также степень минерализации грунтовых вод. Высокоминерализованные воды характеризуются меньшими высотой и скоростью подъема. Однако близкое к поверхности залегание минерализованных грунтовых вод (1 - 1,5 м) создает опасность быстрого засоления почв.

ВОДНЫЙ РЕЖИМ ПОЧВ

Под водным режимом понимают совокупность явлений поступления влаги в почву, ее удержание, расход и передвижение в почве. Количественно его выражают через водный баланс, характеризующий приход влаги в почву и расход из нее.

Общее уравнение водного баланса выражают следующим образом:

В 0 + В ос + В г + В к + В пр + В б = Е исп + Е т + В и + В п + В с + В 1

где Во - начальный запас влаги; В ос - сумма осадков за период наблюдения; В г - количество влаги, поступающей из грунтовых вод; В к - количество влаги, конденсирующейся из паров воды; В пр - количество влаги, поступающей в результате поверхностного притока; В б - количество влаги, поступающей от бокового притока почвенных и грунтовых вод; Е исп - количество влаги, испарившейся с поверхности почвы (физическое испарение); Е т - количество влаги, расходуемое натранспирацию (десукция); В и - влага, инфильтрующаяся впочвенно-грунтовуютолщу; В п - количество воды, теряющейся за счет поверхностного стока; В с - влага, теряющаяся при боковом внутрипочвенном стоке; В 1 - запас влаги в почве в конце периода наблюдения. Если за длительный период времени прогрессирующего увлажнения или иссушения территории не происходит, приход и расход воды в почве равны, уравнение водного баланса равно нулю. Запасы воды в почве в этом случае в начале и в конце периода наблюдений могут быть равны: В 0 = В 1 Для склоновых элементов рельефа количество воды, поступающей от бокового притока почвенных и грунтовых вод, равно количеству воды, теряющейся при боковом стоке: В б = В с. Содержание конденсирующейся в почве влаги по сравнению с другими статьями баланса мало, и им можно пренебречь. С учетом этих уточнений уравнение водного баланса приобретает следующий вид:

В ос + В г + В пр = Е исп + Е т + В и + В п.

Еще более простой вид имеет уравнение водного баланса равноценных территорий с глубоким залеганием грунтовых вод:

В 0 + Вос = Е + В 1

где Е - суммарное испарение, или эвапотранспирация.

В зависимости от характера годового водного баланса по соотношению его составляющих - годовым осадкам и годовому испарению - формируются основные типы водного режима.

Отношение годовой суммы осадков к годовой испаряемости называют коэффициентом увлажнения (КУ). В разных природных зонах КУ колеблется от 3 до 0,1.

Для различных природных условий Г. Н. Высоцкий установил 4 типа водного режима: промывной, периодически промывной, непромывной и выпотной. Развивая учение Г. Н. Высоцкого, профессор А. А. Роде выделил 6 типов водного режима, разделив их на несколько подтипов.

1. Мерзлотный тип. Распространен в условиях многолетней мерзлоты. Мерзлый слой грунта водонепроницаем, является водоупором, над которым проходит надмерзлотная верховодка, которая обусловливает насыщенность водой верхней части оттаявшейпочвы в течение вегетационного периода.

2. Промывной тип (КУ > 1). Характерен для местностей, где сумма годовых осадков больше испаряемости. Весь профиль почвы ежегодно подвергается сквозному промачиванию до грунтовых вод и интенсивному выщелачиванию продуктов почвообразования. Под влиянием промывного типа водного режима формируются почвы подзолистого типа, красноземы и желтоземы. При близком к поверхности залегании грунтовых вод, слабой водопроницаемости почв и почвообразующих пород формируется болотный подтип водного режима. Под его влиянием формируются болотные и подзолисто-болотные почвы.

3. Периодически промывной тип (КУ = 1, при колебаниях от 1,2 до 0,8). Этот тип водного режима отличается средней многолетней сбалансированностью осадков и испаряемости. Для него характерны чередование ограниченного промачивания почв и пород в сухие годы (непромывные условия) и сквозное промачивание (промывной режим) во влажные. Промывание почв избытком осадков происходит 1-2 раза в несколько лет. Такой тип водного режима присущ серым лесным почвам, черноземам оподзоленным и выщелоченным. Водообеспеченность почв неустойчивая.

4. Непромывной тип (КУ < 1). Характеризуется распределением влаги осадков преимущественно в верхних горизонтах и не достигает грунтовых вод. Связь между атмосферной и грунтовой водой осуществляется через слой с очень низкой влажностью, близкой к ВЗ. Обмен влагой происходит путем передвижения воды в форме пара. Такой тип водного режима характерен для степных почв - черноземов, каштановых, бурых полупустынных и серо-бурых пустынных почв. В указанном ряду почв уменьшается количество осадков, увеличивается испаряемость. Коэффициент увлажнения снижается с 0,6 до 0,1.

Влагооборот захватывает толщу почв и грунта от 4 м (степные черноземы) до 1 м (пустынно-степные, пустынные почвы).

Запасы влаги, накопленные в почвах степей весной, интенсивно расходуются на транспирацию и физическое испарение и к осени становятся ничтожно малыми. В полупустынной и пустынной зонах без орошения земледелие невозможно.

5. Выпотной тип (КУ < 1). Проявляется в степной, полупустынной и пустынной зонах при близком залегании грунтовых вод. Преобладают восходящие потоки влаги по капиллярам от грунтовых вод. При высокой минерализации грунтовых вод в почву поступают легкорастворимые соли, происходит ее засоление.

6. Ирригационный тип. Он создается при дополнительном увлажнении почвы оросительными водами. При правильном нормировании поливной воды и соблюдении оросительного режима водный режим почвы должен формироваться по непромывному типу с КУ, близким к единице.

РЕГУЛИРОВАНИЕ ВОДНОГО РЕЖИМА

Каждой почвенно-климатической зоне присущи те или иные типы водного режима почв, которые в зависимости от особенностей возделываемых культур требуют соответствующих мероприятий по его регулированию.

В таежно-лесной почвенно-климатической зоне и в других зонах, где наблюдается избыточное увлажнение почв, используют различные агротехнические приемы, направленные на отвод избыточной влаги из верхних горизонтов почвы: грядкование и гребневание, нивелировку микро- и мезопонижений. При необходимости проводят осушение открытыми канавами, закрытым дренажем, обвалованием, кольматажем и другие мелиоративные приемы.

Избыточное увлажнение можно устранить созданием мощного, хорошо окультуренного пахотного слоя и рыхлением подпахотного горизонта, что обеспечивает повышение влагоемкости почвы и просачивание влаги в нижние слои. Эта влага в засушливые критические периоды вегетации служит дополнительным резервом для выращиваемых растений.

В таежно-лесной зоне иногда бывают засушливые годы, когда сельскохозяйственные культуры из-за недостатка продуктивной влаги резко снижают урожаи. Например, в Московской области из 100 лет 29 бывают засушливыми, 23 - избыточно влажными, 48 - нормальными. Поэтому даже в этой зоне в отдельные годы целесообразно накопление и сбережение влаги атмосферных осадков.

В зонах лесостепи и степи с неустойчивым и недостаточным увлажнением почв основные задачи по регулированию водного режима сводятся к накоплению, сохранению и продуктивному использованию влаги выпадающих осадков для поддержания необходимой обеспеченности возделываемых культур. В этих зонах большое значение приобретают мероприятия, направленные на ослабление поверхностного стока воды, снегозадержание, уменьшение физического испарения воды из почвы.

Важная роль принадлежит системе обработки почвы, чистым парам, борьбе с сорняками, лесополосам. Так, зяблевая обработка почвы, обеспечивая рыхлое строение пахотного слоя, способствует лучшему поглощению дождевых и талых вод, уменьшает поверхностный сток и снижает потери влаги на физическое испарение. Это улучшает влагообеспеченность сельскохозяйственных культур и повышает их урожай.

В засушливых районах Заволжья, Западной Сибири эффективны кулисные пары, способствующие увеличению запасов продуктивной влаги в метровом слое до 50 мм и более (Шульгин). Непроизводительные потери влаги на физическое испарение существенно уменьшаются при проведении весеннего боронования полей, а также при рыхлении поверхностных горизонтов почвы после дождей, предупреждающих образование корки. Послепосевное прикатывание почвы изменяет плотность поверхностного слоя пахотного горизонта по сравнению с остальной его массой. Разность плотностей почвы обусловливает капиллярный подток влаги из нижележащего слоя и помогает возникновению конденсации водяных паров воздуха. Применение минеральных и органических удобрений способствует более экономичному использованию влаги; водопотребление в расчете на 100 кг зерна снижается в среднем на 26 % (Листопадов, Шапошникова).

В овощеводстве для сохранения влаги широко применяют мульчирование почвы различными материалами.

В пустынно-степной и пустынных зонах основной способ регулирования водного режима - орошение. При орошении особенно важно стремиться к уменьшению непродуктивных потерь воды для предотвращения вторичного засоления. Оптимизация водно-физических свойств почв, их структурного состояния способствует улучшению влагообеспеченности растений в различных почвенно-климатических зонах.

Контрольные вопросы и задания

1. Назовите категории (формы) воды в почве. Какова их прочность связи с твердой фазой почвы и доступность растениям? 2. Дайте понятие почвенно-гидрологи-ческих констант, перечислите основные из них. 3. Что называется продуктивной влагой? Как ее вычислить? 4. Назовите и охарактеризуйте водные свойства почвы. Какие свойства почв определяют водные свойства? 5. Дайте понятие водного режима. 6. Охарактеризуйте типы водного режима и приемы их регулирования.

В земледелии регулируют главным образом четыре почвенных режима (водный, воздушный, тепловой и питательный) с целью лучше обеспечить культурные растения и полезную микрофлору почвы факторами жизни. Регулирование почвенных режимов приобретает особою актуальность, когда потребность растений в факторах жизни не обеспечивается естественными природным условиями.
Водный режим. Водный баланс почвы - количественная характеристика водного режима. Он состоит из статей прихода и расхода воды за один и тот же период времени, динамичен и показывает только среднее состояние за определенный отрезок времени, часто за год. Водный баланс (в мм) представляют в виде уравнения:

Bt = B0+(A+P+K+O)-(Т+И+Г+С),

где Bt - запас влаги в конце периода;
B0 - запас влаги в начале периода;
статьи прихода: А - атмосферные осадки; Р - грунтовые воды; К - конденсация паров воздуха; О - орошение;
статьи расхода: Т - транспирация растений; И - испарение с поверхности почвы; Г - инфильтрация в глубокие слои земли; С - поверхностный сток воды и сдувание снега.
Анализ водного баланса позволяет установить наиболее значительные статьи прихода и расхода почвенной влаги и при регулировании водного режима влиять в первую очередь на них. При регулировании водного режима надо знать также водообеспеченность отдельных территорий.
По А. Н. Костикову, водообеспеченность конкретных территорий оценивается расчетным коэффициентом полученным от деления величины естественного поступления воды на ее потребление._По величине этого коэффициента всю территорию страны делят на три района (области): 1) избыточного увлажнения, где коэффициент всегда устойчиво больше 1; 2) недостаточного увлажнения (засушливые), где коэффициент всегда устойчиво меньше 1; 3) неустойчивого увлажнения, где приход влаги в почву то приближается к расходу, то становится больше или меньше его, коэффициент колеблется от 0,5 до 1,3.
В условиях избыточного увлажнения очень важно удалять избыточную влагу, усиливать аэрацию и утеплять почву. Достигается это рядом агротехнических, мелиоративных и других приемов, многие из которых способствуют интенсификации процессов испарения и стока излишней почвенной влаги. Мелиоративные работы по осушению избыточно увлажненных земель связаны с инженерными мероприятиями, из которых широко применяют дренаж, лучше закрытый гончарный. Мелиорация требует дополнительных капитальных вложений, способствует повышению эффективного плодородия почвы й служит одним из направлений интенсификации сельскохозяйственного производства. Избыточное увлажнение почвы снимается также рядом агротехнических приемов: специальными приемами механической обработки почв, гребневыми и грядковыми посевами и другими приемами.
В районах недостаточного увлажнения важнейшими задачами будут следующие: накопление, сохранение и продуктивное использование почвенной влаги, регулирование естественного стока воды, борьба с засолением почвы. Эти задачи хорошо выполняются, когда осуществляют не отдельные приемы, а комплекс, состоящий из агротехнических, мелиоративных, лесомелиоративных, и других приемов. В нем большое значение придается агротехническим мерам. Их роль приобретает еще большее значение в случае применения орошения. Агротехнические приемы разнообразны. Зимой накапливают снег, для чего делают снежные валы или полосы, используют кулисы. Под снежным покровом почва не промерзает глубоко и быстрее оттаивает весной. Поэтому образующаяся из тающего снега вода полнее впитывается в почву. Накопленный на полях снег необходимо удержать от бурного таяния. Поэтому с приближением весны его уплотняют полосами поперек склона. Впитывание и накопление больших количеств воды возможно, если почва обладает хорошими водно-физическими и другими свойствами, высокой водопроницаемостью, большой полевой влагоемкостью.
Эти свойства можно улучшить агротехническими приемами, например приемами, способствующими накоплению органического вещества, улучшению строения пахотного слоя и структуры почвы.
Продуктивное использование влаги достигается созданием благоприятных условий для культурных растений, обеспечивая их остальными факторами жизни. Большое значение имеют оптимальные сроки и высокое качество проведения основной и предпосевной обработок почвы, посева (способ, норма), а также ухода за культурными растениями. Стремятся к тому, чтобы культурные растения быстрее притенили своей надземной массой поверхность почвы, после чего резко сокращается испарение воды с поверхности. До этого поверхность почвы содержат в рыхлом состоянии. Вспашку, посев и последующие обработки осуществляют поперек склона или по горизонталям, чем уменьшают поверхностный сток воды в теплый период года. Для сохранения накопленной влаги применяют мульчирование, ведут активную борьбу с сорной растительностью, вредителями и болезнями культурных растений.
В зоне недостаточного увлажнения большое значение имеет искусственное орошение, успешно развивающееся в нашей страде. Орошение на фоне высокой агротехники и использования сортов интенсивного типа позволяет получать высокие и устойчивые урожаи всех культур на пашне и много дешевого корма на культурных пастбищах.
В районах неустойчивого увлажнения приемы регулирования водного режима должны быть наиболее гибкими, так как в засушливые годы или в отдельные периоды вегетации растений надо решать задачи по накоплению, сбережению и продуктивному использованию воды, во влажные годы - но отводу ее излишков. Здесь громадное значение имеет двустороннее регулирование водного режима соответствующими агротехническими и мелиоративными приемами. Последние в этой зоне должны быть осушительно-оросительными.