Олово обозначение. Основные физические свойства олова. Запасы и добыча



Олово - металл, служивший человеку с незапамятных времен. Физические свойства олова обеспечили его основополагающую роль в истории человечества. Без него невозможно существование бронзы, остававшейся на протяжении многих веков единственным сплавом, из которого человек изготовлял практически все - от орудий труда до ювелирных украшений.

Олово – металл использующийся человеком с давних времен

Физические свойства олова

При нормальном давлении и температуре 20°C олово идентифицируется как металл с блеском бело-серебристого цвета. Медленно тускнеет на воздухе вследствие образования оксидной пленки.

Для олова, как и для всех металлов, характерна непрозрачность. Свободные электроны металлической кристаллической решетки заполняют межатомное пространство и отражают световые лучи, не пропуская их. Поэтому находясь в кристаллическом состоянии, металл имеет характерный блеск, а в порошкообразном виде этот блеск утрачивает.

Обладает отличной ковкостью, т. е. легко подвергается обработке с помощью давления. Ковкость олову придает его высокая пластичность в сочетании с низким сопротивлением деформации. Пластичность металла позволяет раскатать его в тонкую фольгу, называемую станиолем или оловянной бумагой. Ее толщина колеблется от 0,008 до 0,12 мм. Ранее станиоль находил применение в качестве подложки при изготовлении зеркал и в электротехнике при производстве конденсаторов, пока не был полностью вытеснен алюминиевой фольгой.

У олова свойства достаточно мягкого металла. Его твердость по шкале Бринелля составляет 3,9–4,2 кгс/мм².

Относится к легкоплавким металлам. Температура плавления олова – 231,9°C – способствует быстрому извлечению его из руды. Олово просто сплавляется с другими металлами, что обеспечивает его обширное применение в промышленности.

Плотность при температуре 20°C составляет 7,29 г/см³. По этому показателю олово в 2,7 раза тяжелее алюминия, но легче серебра, золота, платины и приближено к плотности железа (7,87 г/см³).

Металл закипает при высокой температуре, равной 2620°C, долго оставаясь жидким в расплаве.

Химически чистое олово при обычной температуре обладает незначительной прочностью. При растяжении предел механической прочности составляет всего 1,7 кгс/мм², а относительное удлинение – 80–90%. Эти характеристики говорят о том, что деформировать оловянный прут можно без особых усилий в разных направлениях. При этом смещение слоев кристаллической решетки металла относительно друг друга сопровождается специфичным треском.

Полиморфизм олова

Полиморфизм (аллотропия) - физическое явление, основанное на перестроении атомов или молекул веществ в твердом состоянии, что влечет за собой изменение их свойств. Каждая полиморфная модификация устойчиво существует только в строго определенном интервале значений температур и давлений.

Любой металл обладает специфической кристаллической решеткой. При изменении внешних физических условий кристаллическая решетка может меняться. Полиморфизм металлов используют при их термической обработке в промышленности.

Олово – металл по разному реагирующий на химические воздействия

Химические свойства олова определяются его положением в периодической системе элементов Д. И. Менделеева и предусматривают амфотерность, т. е. способность проявлять как основные, так и кислотные свойства. Напрямую зависят от полиморфизма олова физические свойства.

Для металла известны три аллотропные модификации: альфа, бета и гамма. Полиморфная перестройка кристаллических решеток возможна вследствие изменения симметрии электронных оболочек атомов под воздействием разных температур.

  1. Для серого олова (α-Sn) характерна гранецентрированная кубическая кристаллическая решетка. Размер элементарной ячейки решетки здесь большой. Это напрямую отражается на плотности. Она меньше, чем у белого олова: 5,85 и 7,29 г/см³ соответственно. По электропроводности альфа-модификация относится к полупроводникам. По магнетизму - к диамагнетикам, т. к. под внешним магнитным воздействием намагничивается против направления внутреннего магнитного поля. Альфа-олово существует до температуры 13,2°C в виде мелкодисперсного порошка и практического значения не несет.
  2. Белое олово (β-Sn) является самой устойчивой аллотропной модификацией с объемноцентрированной тетрагональной кристаллической решеткой. Существует в диапазоне температурных значений от 13,2 до 161°С. Очень пластично, мягче золота, но тверже свинца. Среди остальных металлов обладает средним значением теплопроводности. Металл относят к проводникам, хотя электропроводность у бета-модификации относительно низкая. Этим свойством пользуются, чтобы уменьшить электропроводность какого-либо сплава путем добавления олова. Является парамагнетиком, т. е. во внешнем магнитном поле намагничивается в направлении внутреннего магнитного поля.
  3. Гамма-модификация (γ-Sn) обладает ромбической кристаллической решеткой, устойчива в диапазоне температур от 161 до 232°С. С увеличением температуры пластичность возрастает, но, достигнув температуры фазового перехода в 161°С, металл полностью утрачивает это свойство. Гамма-модификация имеет большую плотность при высокой степени хрупкости, т. е. сразу рассыпается в порошок, поэтому практического применения не имеет.

Особенности полиморфного перехода β→α

Процесс перехода из одной полиморфной модификации в другую происходит при изменении температуры. При этом наблюдают скачкообразные изменения физико-химических свойств металла.

Выше температуры 161°С бета-олово обратимо превращается в хрупкую гамма-модификацию. Ниже температуры 13°С бета-модификация необратимо переходит в порошкообразное серое олово. Данный полиморфный переход совершается с очень малой скоростью, но стоит только на бета-олово попасть крупинкам альфа-модификации, как плотный металл рассыпается в пыль. Поэтому полиморфный переход β→α иногда называют «оловянной чумой». Обратно альфа-модификация переводится в бета-модификацию только путем переплавки.

Фазовый переход β→α значительно ускоряется при минусовых температурах окружающей среды и сопровождается увеличением удельного объема металла примерно на 25%, что приводит к его рассыпанию в порошок.

У олова есть уникальная реакция на мороз “оловянная чума”

В истории есть случаи, когда оловянные изделия на морозе становились серым порошком, обескураживая своих хозяев. «Оловянная чума» встречается редко и характерна лишь для химически чистого вещества. При наличии даже мельчайших примесей переход металла в порошок сильно замедляется.

Интересно предположение некоторых историков, что победу российскому императору Александру I над французской армией под командованием Наполеона Бонапарта помогла одержать «оловянная чума». При сильных морозах пуговицы на шинелях французов просто рассыпались в прах, и солдаты, замерзая, потеряли боеспособность.

Заключение

Олово обладает всеми типичными физическими свойствами металлов, а его полиморфизм по-своему удивителен. Без уникальной тягучести и пластичности этого металла невозможно представить себе современную промышленность. Почти половина от мировой добычи олова используется для производства пищевой жести. Оставшаяся половина расходуется для изготовления сплавов и различных соединений, применяемых во всех хозяйственных отраслях.

Олово - один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, - это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.
Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.
Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита - важнейшего из минералов олова; состав его Sn0 2 . Другой важный минерал - станнин, или оловянный колчедан, Cu 2 FeSnS 4 . Остальные 14 минералов элемента № 50 встречаются намного реже и промышленного значения не имеют.
Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента № 50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1 % Sn, а россыпи - и того меньше: 0,01-0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд

Производство элемента № 50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.
Состав полученного оловянного концентрата зависит от сырья, и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600-700° С), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова - плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.
В черновом олове примесей еще довольно много: 5- 8%. Чтобы получить металл сортовых марок (96,5- 99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток - 99,99985% Sn - получают преимущественно методом зонной плавки.

Еще один источник

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.
Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.
Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. же соединяется с хлором очень легко. Образуется дымящаяся жидкость - хлорное олово SnCl 4 , которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.
Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т. д. Круговорот олова - дело рук человеческих.

Олово в сплавах

На консервные банки идет примерно половина мирового производства олова. Другая половина - в металлургию, для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова - бронзе, адресуя читателей к статье о меди - другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянных бронз - дефицитность элемента № 50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.
Техника нуждается и в других оловянных сплавах. Их, правда, почти не применяют в качестве конструкционных материалов: они недостаточно прочны и слишком дороги. Зато у них есть другие свойства, позволяющие решать важные технические задачи при сравнительно небольших затратах материала.
Чаще всего оловянные сплавы применяют в качестве антифрикционных материалов или припоев. Первые позволяют сохранять машины и механизмы, уменьшая потери на трение; вторые соединяют металлические детали.
Из всех антифрикционных сплавов наилучшнми свойствами обладают оловянные баббиты, в составе которых до 90% олова. Мягкие и легкоплавкие свинцовооловянные припои хорошо смачивают поверхность большинства металлов, обладают высокой пластичностью и сопротивлением усталости. Однако область их применения ограничивается из-за недостаточной механической прочности самих припоев.
Олово входит также в состав типографского сплава гарта. Наконец, сплавы на "основе олова очень нужны электротехнике. Важнейший материал для электроконденсаторов - станиоль; это почти чистое олово, превращенное в тонкие листы (доля других металлов в станиоле не превышает 5 %).
Между прочим, многие сплавы олова - истинные химические соединения элемента № 50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr 3 Sn 2 плавится лишь при 1985° С. И «виновата» здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651° С - далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре - 232° С. А их сплав - соединение Mg2Sn - имеет температуру плавления 778° С.
Тот факт, что элемент № 50 образует довольно много-численные сплавы такого рода, заставляет критически отнестись к утверждению, что лишь 7% производимого в мире олова расходуется в виде химических соединений. Видимо, речь здесь идет только о соединениях с неметаллами.


Соединения с неметаллами

Из этих веществ наибольшее значение имеют хлориды. В тетрахлориде олова SnCl 4 растворяются иод, фосфор, сера, многие органические вещества. Поэтому и используют его главным образом как весьма специфический растворитель. Дихлорид олова SnCl 2 применяют как про-траву при крашении и как восстановитель при синтезе органических красителей. Те же функции в текстильном производстве еще у одного соединения элемента № 50 - станната натрия Na 2 Sn0 3 . Кроме того, с его помощью утяжеляют шелк.
Промышленность ограниченно использует и окислы олова. SnO применяют для получения рубинового стекла, a Sn0 2 - белой глазури. Золотисто-Желтые кристаллы дисульфида олйва SnS 2 нередко называют сусальным золотом, которым «золотят» дерево, гипс . Это, если можно так выразиться, самое «антисовременное» применение соединений олова. А самое современное?
Если иметь в виду только соединения олова, то это применение станната бария BaSn0 3 в радиотехнике в качестве превосходного диэлектрика. А один из изотопов олова, il9Sn, сыграл заметную роль при изучении эффекта Месс- бауэра - явления, благодаря которому был создан новый метод исследования - гамма-резонансная спектроскопия. И это не единственный случай, когда древний металл сослужил службу современной науке.
На примере серого олова - одной из модификаций элемента № 50 - была выявлена связь между свойствами и химической природой полупроводникового материала И это, видимо, единственное, за что серое олово можно помянуть добрым словом: вреда оно принесло больше, чем пользы. Мы еще вернемся к этой разновидности эле мента № 50 после рассказа о еще одной большой и важной группе соединений олова.

Об оловоорганике

Элементоорганических соединений, в состав которых входит олово, известно великое множество. Первое из них получено еще в 1852 г.
Сначала вещества этого класса получали лишь одним способом - в обменной реакции между неорганическими соединениями олова и реактивами Гриньяра. Вот пример такой реакции:
SnCl 4 + 4RMgX → SnR 4 + 4MgXCl (R здесь - углеводородный радикал, X - галоген).
Соединения состава SnR4 широкого практического при-менения не нашли. Но именно из них получены другие оловоорганические вещества, польза которых несомненна.

Впервые интерес к оловоорганнке возник в годы первой мировой войны. Почти все органические соединения олова, полученные к тому времени, были токсичны. В качестве отравляющих веществ эти соединения не были использованы, их токсичностью для насекомых, плесневых грибков, вредных микробов воспользовались позже. На основе ацетата трифенилолова (C 6 H 5) 3 SnOOCCH 3 был создан эффективный препарат для борьбы с грибковыми заболеваниями картофеля и сахарной свеклы. У этого препарата оказалось еще одно полезное свойство: он стимулировал рост и развитие растений.
Для борьбы с грибками, развивающимися в аппаратах целлюлозно-бумажной промышленности, применяют другое вещество - гидроокись трибутилолова (С 4 Н 9)зSnОН. Это намного повышает производительность аппаратуры.
Много «профессий» у дилаурината дибутилолова (C 4 H 9) 2 Sn(OCOC 11 H 23) 2 . Его используют в ветеринарной практике как средство против гельминтов (глистов). Это же вещество широко применяют в химической промышленности как стабилизатор поливинилхлорида и других полимерных материалов и как катализатор. Скорость
реакции образования уретанов (мономеры полиуретановых каучуков) в присутствии такого катализатора возрастает в 37 тыс. раз.
На основе оловоорганических соединений созданы эффективные инсектициды; оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.
Все это соединения четырехвалентного олова. Ограниченные рамки статьи не позволяют рассказать о многих других полезных веществах этого класса.
Органические соединения двухвалентного олова, напротив, немногочисленны и практического применения пока почти не находят.

О сером олове

Морозной зимой 1916 г. партия олова была отправлена по железной дороге с Дальнего Востока в европейскую часть России. Но на место прибыли не серебристобелые слитки, а преимущественно мелкий серый порошок.
За четыре года до этого произошла катастрофа с экспедицией полярного исследователя Роберта Скотта. Экспедиция, направлявшаяся к Южному полюсу, осталась без топлива: оно вытекло из железных сосудов сквозь швы, пропаянные оловом.
Примерно в те же годы к известному русскому химику В. В. Марковникову обратились из интендантства с просьбой объяснить, что происходит с лужеными чайниками, которыми снабжали русскую армию. Чайник, который принесли в лабораторию в качестве наглядного примера, был покрыт серыми пятнами и наростами, которые осыпались даже при легком постукивании рукой. Анализ показал, что и пыль, и наросты состояли только из олова, без каких бы то ни было примесей.

Что же происходило с металлом во всех этих случаях?
Как и многие другие элементы, олово имеет несколько аллотропических модификаций, несколько состояний. (Слово «аллотропия» переводится с греческого как «другое свойство», «другой поворот».) При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в принадлежности его к классу металлов.
Белый металл, пластичный, ковкий. Кристаллы белого олова (его называют еще бета-оловом) тетрагональные. Длина ребер элементарной кристаллической решетки - 5,82 и 3,18 А. Но при температуре ниже 13,2° С «нормальное» состояние олова иное. Едва достигнут этот температурный порог, в кристаллической структуре оловянного слитка начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39° С.
Кристаллы серого олова кубической конфигурации; размеры их элементарных ячеек больше - длина ребра 6,49 А. Поэтому плотность серого олова заметно меньше, чем белого: 5,76 и 7,3 г/см3 соответственно.
Результат превращения белого олова в серое иногда называют «оловянной чумой». Пятна и наросты на армейских чайниках, вагоны с оловянной пылью, швы, ставшие проницаемыми для жидкости,- следствия этой «болезни».
Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.
Кроме белого и серого олова, обнаружена еще одна аллотропическая модификация элемента № 50 - гамма-олово, устойчивое при температуре выше 161° С. Отличительная черта такого олова - хрупкость. Как и все металлы, с ростом температуры олово становится пластичнее, но только при температуре ниже 161° С. Затем оно полностью утрачивает пластичность, превращаясь в гамма- олово, и становится настолько хрупким, что его можно истолочь в порошок.


Еще раз о дефиците метела

Часто статьи об элементах заканчиваются рассуждениями автора о будущем своего «героя». Как правило, рисуется оно в розовом свете. Автор статьи об олове лишен этой возможности: будущее олова - металла, несомненно, Полезнейшего - неясно. Неясно только по одной причине.
Несколько лет пазад американское Горное бюро опубликовало расчеты, из которых следовало, что разведанных запасов элемента № 50 хватит миру самое большее на 35 лет. Правда, уже после этого было найдено несколько новых месторождений, в том числе крупнейшее в Европе, расположенное на территории Польской Народной Республики. И тем не менее дефицит олова продолжает тревожить специалистов.
Поэтому, заканчивая рассказ об элементе № 50, мы хотим еще раз напомнить о необходимости экономить и беречь олово.
Нехватка этого металла волновала даже классиков литературы. Помните у Андерсена? «Двадцать четыре солдатика были совершенно одинаковые, а двадцать пятый солдатик был одноногий. Его отливали последним, и олова немного не хватило». Теперь олова не хватает не немного. Недаром даже двуногие оловянные солдатики стали редкостью - чаще встречаются пластмассовые. Но при всем уважении к полимерам заменить олово они могут далеко не всегда.
ИЗОТОПЫ. Олово - один из самых «многоизотопных» элементов: природное олово состоит из десяти изотопов с массовыми числами 112, 114-120, 122 п 124. Самый распространенный из них i20Sn, на его долю приходится около 33% всего земного олова. Почти в 100 раз меньше олова-115- самого редкого изотопа элемента № 50.
Еще 15 изотопов олова с массовыми числами 108-111, 113, 121, 123, 125-132 получены искусственно. Время жизни этих изотопов далеко не одинаково. Так, олово-123 имеет период полураспада 136 дней, а олово-132 всего 2,2 минуты.


ПОЧЕМУ БРОНЗУ НАЗВАЛИ БРОНЗОЙ? Слово «бронза» почти одинаково звучит на многих европейских языках. Его происхождение связывают с названием небольшого итальянского порта на берегу Адриатического моря - Бриндизи. Именно через этот порт доставляли бронзу в Европу в старину, и в древнем Риме этот сплав называли «эс бриндиси»- медь из Бриндизи.
В ЧЕСТЬ ИЗОБРЕТАТЕЛЯ. Латинское слово frictio означает «трение». Отсюда название антифрикционных материалов, то есть материалов «против трепия». Они мало истираются, отличаются мягкостью и тягучестью. Главное их применение - изготовление подшипниковых вкладышей. Первый антифрикционный сплав на основе олова и свинца предложил в 1839 г. инженер Баббит. Отсюда название большой и очень важной группы антифрикционных сплавов - баббитов.
jKECTb ДЛЯ КОНСЕРВИРОВАНИЯ. Способ длительного сохранения пищевых продуктов консервированием в банках из белой жести, покрытой оловом, первым предложил французский повар ф. Аппер в 1809 г.
СО ДНА ОКЕАНА. В 1976 г. начало работать необычное предприятие, которое сокращенно называют РЭП. Расшифровывается это так: разведочно-эксплуатационное предприятие. Оно размещается в основном на кораблях. За Полярным кругом, в море Лаптевых, в районе Ванькиной губы РЭП добывает с морского дна оловоносный песок. Здесь же, на борту одного из судов, работает обогатительная фабрика.
МИРОВОЕ ПРОИЗВОДСТВО. По американским данным, мировое производство олова в конце прошлого века составляло 174-180 тыс. т.

Несмотря на свое наименование – «стойкий», к прочным металлам не относится. Оно слишком легкое и ковкое, чтобы его можно было применять для производства любых несущих конструкций. А вот ковкость при относительно низкой температуре и пластичность делают вещество весьма популярным в соответствующей области. О том, как можно использовать олово, где купить его для пайки, какие припои с ним возможны — все это и даже больше вы узнаете из данной статьи.

Сплавы

В современном народном хозяйстве в абсолютном большинстве случаев используется не олово, а его разнообразные сплавы.

  • Самая древняя и известная сфера использования – , то есть, и олова. Он обладает не только превосходными эстетическими качествами, но прекрасными техническими: , устойчива к износу, не подвержена коррозии и так далее. Ну а красоту сплава оценили очень и очень давно: и сейчас привлекают богатством цвета и блеска.
  • Второе наиболее известное применение – припои . Это , серебра, меди, а так же кадмия или висмута. Отличительная особенность этого сплава – низкая температура плавления, способность образовывать связи с другими металлами и высокая прочность таких соединений. С помощью припоев соединяют между собой самые разнообразные детали из металлов, которые друг с другом соединены быть не могут – из-за слишком разной температуры плавления, например. Изредка, но применяются и чисто оловянные припои.

Свойства припоя определяются его . Традиционно он используется в радио- и электротехнике. А вот сплав из 30% олова и 70% свинца отличается очень широким диапазоном затвердевания. Эту характеристику используют при пайке труб разного рода.

  • И само олово, и оловянно-свинцовые сплавы обладают хорошим сцеплением к металлу. А поэтому и те и другие используются для внешнего покрытия деталей с целью защитить изделия от коррозии и придать им привлекательный вид. Наносят слой, погрузив предмет в ванну с расплавом, или электролитическим методом из водных растворов.
  • Еще один известный сплав из олова, сурьмы и меди известен за счет своих выдающихся антифрикционных качеств. Такие составы – баббиты, применяют для покрытия различных движущихся с целью уменьшить их износ.
  • Сплав металла со свинцом и сурьмой применяют при изготовлении типографских шрифтов. Его прочность и устойчивость к усталости позволяют длительное время использовать один и тот же набор.
  • Еще одно необычное применение соединения металла со свинцом – органные трубы. Олово – наиболее тонально-резонансный металл из известных. Его количество в сплаве определяет тон трубы.

О сферах использования олова расскажет данное видео:

Самостоятельное вещество

Олово применяют и в качестве подачи самостоятельного вещества – с долей до 97–99%.

  • Почти половина такого чистого металла как олово уходит на покрытие консервных банок. Всем известные жестяные предметы представляют собой стальное изделие, покрытое тончайшим слоем олова – 0,4 мкм. Последний обеспечивает превосходную антикоррозийную защиту.
  • Из олова производят массу разнообразных пищевых контейнеров и даже посуду, поскольку металл отличается прекрасными гигиеническими свойствами и абсолютно безопасен в отличие от своего средневекового «собрата», представляющего собой сплав со свинцом. Посуда из этого легкого серебристого металла очень красива. Кроме того, высокая ковкость и пластичность вещества позволяют не просто штамповать кастрюльки и тарелки, а изготавливать действительно превосходные предметы столовой сервировки. Соответственно, популярностью пользуются подарки из олова.
  • Благодаря отличным антикоррозийным свойствам олово используют и при изготовлении трубопровода. Особенно ценны эти его качества при организации системы снабжения питьевой водой. Большого распространения они, правда, не получают, поскольку материал довольно дорогой, а, самое главное, дефицитен на строительном рынке.

Про теплоту, градус, удельную температура плавления олова для изготовления изделий и пайки микросхем, про особенности применения в промышленности белого, серого, хлорного, жидкого олова, его свойства расскажем ниже.

Применение металла в строительстве

Невысокая прочность и твердость значительно ограничивают применение олова в строительной сфере. Да и большинство сплавов с металлом предполагают совершенно другие характеристики.

Однако и в этой области веществу нашлось место.

Оловянные бронзы

Сплав олова с – наиболее известное применение металла, за исключением, возможно, получения белой жести. Оловянная обладает превосходными антифрикционными свойствами, устойчива к коррозии, гигиенична и не боится мороза. Кроме того, материал необычайно привлекателен внешне и обладает доставочной ковкостью.

Эти свойства и определяют сферы применения оловянного сплава.

  • Трубопровод – стойкость к действию высоких температуры и очень малая усадка – менее 1%, обуславливают применение бронзовых труб для любого типа трубопровода: горячего и холодного водоснабжения, отопления и так далее. Благодаря тому, что материал не поддается коррозии, он исключительно долговечен: бронзовый трубопровод (не путать с ) рассчитан на использование столетиями. Кроме того, его значительно проще обслуживать. Внешний вид его со временем становится только привлекательнее: правильная черная патина придает даже простой трубе элегантность, свойств своих материал не теряет, к тому же материал не накапливает электричество, как сталь, например.
  • Сантехника – ванные, умывальники, унитазы из этого сплава не только «честно» выполняют свою роль, то есть, являются долговечными предметами с прекрасными гигиеническими свойствами, они зачастую еще и очень красивы. Ковкость бронзы позволяет превратить ванную в художественный шедевр.
  • То же самое касается и мелких аксессуаров для ванной , санузла или кухни. Бронзовые краны, лейки, подставки, полотенцесушители и прочие придадут любому интерьеру вид совершенно роскошный.
  • Фурнитура другого рода – ручки, замки, дверные накладные петли и даже кольца для штор, весьма изысканный штрих классического стиля.
  • Лестничные перила и ограждения – пожалуй, самое эффектное применение бронзы в жилом доме, поскольку имеет относительно большую площадь. Кованые или литые бронзовые перила – способ сделать интерьер не только уникальным, но и в высшей степени роскошным и элегантным.
  • и предметы быта , которые можно сделать из металла – вешалки, скамьи, держатели, рамы для зеркала и так далее. Выполненные из бронзы эти изделия являются украшением любого дома и в любом стиле.

О том, что делать, если вам не хватает олова для пайки, расскажет данное видео:

Предметы быта

Канули в Лето оловянные подсвечники, подстаканники, пуговицы и солдатики. Сегодня чистое олово, несмотря на куда меньшую стоимость по сравнению с прошлыми веками, имеет куда меньшее применение, поскольку вытесняется более дешевыми и доступными сплавами.

Однако любители ретростилей и сейчас не преминут найти оловянное изделие для украшения интерьера.

  • Оловянная фурнитура – в основном дверные ручки, хотя можно найти и другие изделия. По сравнению с бронзой или олово кажется более скромным и обладает меньшим блеском. Однако для стилей кантри или английского это является достоинством. Ну а высокая ковкость материала значительно компенсирует его неяркость.
  • Оловянная посуда – от самой простой «дедовской» кружки, из которой «такая вкусная вода», до изысканного столового прибора. Посуда из олова изящна и составит честь любой гостиной. А уж набором оловянных десертных ложечек и сейчас можно удивить любителя старины.
  • В позапрошлом веке повсеместно использовались штампованные оловянные уличные фонари . Использовать их давно перестали, а вот оловянные светильники разного рода – от люстр до скромных настольных, изготавливают до сих пор.

Олово – металл малораспространенный, более всего известен как компонент бронзы, да и применение в строительстве и быту нашел именно в виде бронзового сплава. Однако оловянные предметы быта и посуда и сейчас являются украшением столовой.

Решили самостоятельно изготовить небольшие поделки из олова? Тогда посмотрите прежде этот видеосюжет:

Олово – один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, – это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.

Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита – важнейшего из минералов олова; состав его SnO 2 . Другой важный минерал – станнин, или оловянный колчедан, Cu 2 FeSnS 4 . Остальные 14 минералов элемента №50 встречаются намного реже и промышленного значения не имеют. Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента №50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% Sn, а россыпи – и того меньше: 0,01...0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд

Производство элемента №50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.

Состав полученного оловянного концентрата зависит от сырья, и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600...700°C), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова – плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.

В черновом олове примесей еще довольно много: 5...8%. Чтобы получить металл сортовых марок (96,5...99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток – 99,99985% Sn – получают преимущественно методом зонной плавки.

Еще один источник

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.

Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.

Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. Олово же соединяется с хлором очень легко. Образуется дымящаяся жидкость – хлорное олово SnCl 4 , которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.

Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т.д. Круговорот олова – дело рук человеческих.

Олово в сплавах

На консервные банки идет примерно половина мирового производства олова. Другая половина – в металлургию, для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова – бронзе, адресуя читателей к статье о меди – другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянпьтх бронз – дефицитность элемента №50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.

Техника нуждается и в других оловянных сплавах. Их, правда, почти не применяют в качестве конструкционных, материалов: они недостаточно прочны и слишком дороги. Зато у них есть другие свойства, позволяющие решать важные технические задачи при сравнительно небольших затратах материала.

Чаще всего оловянные сплавы применяют в качестве антифрикционных материалов или припоев. Первые позволяют сохранять машины и механизмы, уменьшая потери на трение; вторые соединяют металлические детали.

Из всех антифрикционных сплавов наилучшими свойствами обладают оловянные баббиты, в составе которых до 90% олова. Мягкие и легкоплавкие свинцовооловянные припои хорошо смачивают поверхность большинства металлов, обладают высокой пластичностью и сопротивлением усталости. Однако область их применения ограничивается из-за недостаточной механической прочности самих припоев.

Олово входит также в состав типографского сплава гарта. Наконец, сплавы на основе олова очень нужны электротехнике. Важнейший материал для электроконденсаторов – станиоль; это почти чистое олово, превращенное в тонкие листы (доля других металлов в станиоле не превышает 5%).

Между прочим, многие сплавы олова – истинные химические соединения элемента №50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr 3 Sn 2 плавится лишь при 1985°C. И «виновата» здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651°C – далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре – 232°C. А их сплав – соединение Mg 2 Sn – имеет температуру плавления 778°C.

Тот факт, что элемент №50 образует довольно многочисленные сплавы такого рода, заставляет критически отнестись к утверждению, что лишь 7% производимого в мире олова расходуется в виде химических соединений («Краткая химическая энциклопедия», т. 3, с. 739). Видимо, речь здесь идет только о соединениях с неметаллами.

Соединения с неметаллами

Из этих веществ наибольшее значение имеют хлориды. В тетрахлориде олова SnCl 4 растворяются иод, фосфор, сера, многие органические вещества. Поэтому и используют его главным образом как весьма специфический растворитель. Дихлорид олова SnCl 2 применяют как протраву при крашении и как восстановитель при синтезе органических красителей. Те же функции в текстильном производстве еще у одного соединения элемента №50 – станната натрия Na 2 SnO 3 . Кроме того, с его помощью утяжеляют шелк.

Промышленность ограниченно использует и окислы олова. SnO применяют для получения рубинового стекла, a SnO 2 – белой глазури. Золотисто-желтые кристаллы дисульфида олова SnS 2 нередко называют сусальным золотом, которым «золотят» дерево, гипс. Это, если можно так выразиться, самое «антисовременное» применение соединений олова. А самое современное?

Если иметь в виду только соединения олова, то это применение станната бария BaSnO 3 в радиотехнике в качестве превосходного диэлектрика. А один из изотопов олова, 119 Sn, сыграл заметную роль при изучении эффекта Мессбауэра – явления, благодаря которому был создан новый метод исследования – гамма-резонансная спектроскопия. И это не единственный случай, когда древний металл сослужил службу современной науке.

На примере серого олова – одной из модификаций элемента №50 – была выявлена связь между свойствами и химической природой полупроводникового материала. И это, видимо, единственное, за что серое олово можно помянуть добрым словом: вреда оно принесло больше, тем пользы. Мы еще вернемся к этой разновидности элемента №50 после рассказа о еще одной большой и важной группе соединений олова.

Об оловоорганике

Элементоорганических соединений, в состав которых входит олово, известно великое множество. Первое из них получено еще в 1852 г.

Сначала вещества этого класса получали лишь одним способом – в обменной реакции между неорганическими соединениями олова и реактивами Гриньяра. Вот пример такой реакции:

SnCl 4 + 4RMgX → SnR 4 + 4MgXCl

(R здесь – углеводородный радикал, X – галоген).

Соединения состава SnR 4 широкого практического применения не нашли. Но именно из них получены другие оловоорганические вещества, польза которых несомненна.

Впервые интерес к оловоорганике возник в годы первой мировой войны. Почти все органические соединения олова, полученные к тому времени, были токсичны. В качестве отравляющих веществ эти соединения не были использованы, их токсичностью для насекомых, плесневых грибков, вредных микробов воспользовались позже. На основе ацетата трифенилолова (C 6 H 5) 3 SnOOCCH 3 был создан эффективный препарат для борьбы с грибковыми заболеваниями картофеля и сахарной свеклы. У этого препарата оказалось еще одно полезное свойство: он стимулировал рост и развитие растений.

Для борьбы с грибками, развивающимися в аппаратах целлюлозно-бумажной промышленности, применяют другое вещество – гидроокись трибутилолова (С 4 Н 9) 3 SnOH. Это намного повышает производительность аппаратуры.

Много «профессий» у дилаурината дибутилолова (C 4 H 9) 2 Sn(OCOC 11 H 23) 2 . Его используют в ветеринарной практике как средство против гельминтов (глистов). Это же вещество широко применяют в химической промышленности как стабилизатор поливинилхлорида и других полимерных материалов и как катализатор. Скорость реакции образования уретанов (мономеры полиуретановых каучуков) в присутствии такого катализатора возрастает в 37 тыс. раз.

На основе оловоорганических соединений созданы эффективные инсектициды; оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.

Все это соединения четырехвалентного олова. Ограниченные рамки статьи не позволяют рассказать о многих других полезных веществах этого класса.

Органические соединения двухвалентного олова, напротив, немногочисленны и практического применения пока почти не находят.

О сером олове

Морозной зимой 1916 г. партия олова была отправлена по железной дороге с Дальнего Востока в европейскую часть России. Но на место прибыли не серебристо-белые слитки, а преимущественно мелкий серый порошок.

За четыре года до этого произошла катастрофа с экспедицией полярного исследователя Роберта Скотта. Экспедиция, направлявшаяся к Южному полюсу, осталась без топлива: оно вытекло из железных сосудов сквозь швы, пропаянные оловом.

Примерно в те же годы к известному русскому химику В.В. Марковникову обратились из интендантства с просьбой объяснить, что происходит с лужеными чайниками, которыми снабжали русскую армию. Чайник, который принесли в лабораторию в качестве наглядного примера, был покрыт серыми пятнами и наростами, которые осыпались даже при легком постукивании рукой. Анализ показал, что и пыль, и наросты состояли только из олова, без каких бы то ни было примесей.

Что же происходило с металлом во всех этих случаях?

Как и многие другие элементы, олово имеет несколько аллотропических модификаций, несколько состояний. (Слово «аллотропия» переводится с греческого как «другое свойство», «другой поворот».) При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в принадлежности его к классу металлов.

Белый металл, пластичный, ковкий. Кристаллы белого олова (его называют еще бета-оловом) тетрагональные. Длина ребер элементарной кристаллической решетки – 5,82 и 3,18 Å. Но при температуре ниже 13,2°C «нормальное» состояние олова иное. Едва достигнут этот температурный порог, в кристаллической структуре оловянного слитка начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39°C.

Кристаллы серого олова кубической конфигурации; размеры их элементарных ячеек больше – длина ребра 6,49 Å. Поэтому плотность серого олова заметно меньше, чем белого: 5,76 и 7,3 г/см 3 соответственно.

Результат превращения белого олова в серое иногда называют «оловянной чумой». Пятна и наросты на армейских чайниках, вагоны с оловянной пылью, швы, ставшие проницаемыми для жидкости, – следствия этой «болезни».

Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.

Кроме белого и серого олова, обнаружена еще одна аллотропическая модификация элемента №50 – гамма-олово, устойчивое при температуре выше 161°C. Отличительная черта такого олова – хрупкость. Как и все металлы, с ростом температуры олово становится пластичнее, но только при температуре ниже 161°C. Затем оно полностью утрачивает пластичность, превращаясь в гамма-олово, и становится настолько хрупким, что его можно истолочь в порошок.

Еще раз о дефиците

Часто статьи об элементах заканчиваются рассуждениями автора о будущем своего «героя». Как правило, рисуется оно в розовом свете. Автор статьи об олове лишен этой возможности: будущее олова – металла, несомненно, полезнейшего – неясно. Неясно только по одной причине.

Несколько лет назад американское Горное бюро опубликовало расчеты, из которых следовало, что разведанных запасов элемента №50 хватит миру самое большее на 35 лет. Правда, уже после этого было найдено несколько новых месторождений, в том числе крупнейшее в Европе, расположенное на территории Польской Народной Республики. И тем не менее дефицит олова продолжает тревожить специалистов.

Поэтому, заканчивая рассказ об элементе №50, мы хотим еще раз напомнить о необходимости экономить и беречь олово.

Нехватка этого металла волновала даже классиков литературы. Помните у Андерсена? «Двадцать четыре солдатика были совершенно одинаковые, а двадцать пятый солдатик был одноногий. Его отливали последним, и олова немного не хватило». Теперь олова не хватает не немного. Недаром даже двуногие оловянные солдатики стали редкостью – чаще встречаются пластмассовые. Но при всем уважении к полимерам заменить олово они могут далеко не всегда.

Изотопы

Олово – один из самых «многоизотопных» элементов: природное олово состоит из десяти изотопов с массовыми числами 112, 114...120, 122 и 124. Самый распространенный из них 120 Sn, на его долю приходится около 33% всего земного олова. Почти в 100 раз меньше олова-115 – самого редкого изотопа элемента №50. Еще 15 изотопов олова с массовыми числами 108...111, 113, 121, 123, 125...132 получены искусственно. Время жизни этих изотопов далеко не одинаково. Так, олово-123 имеет период полураспада 136 дней, а олово-132 всего 2,2 минуты.

Почему бронзу назвали бронзой?

Слово «бронза» почти одинаково звучит на многих европейских языках. Его происхождение связывают с названием небольшого итальянского порта на берегу Адриатического моря – Бриндизи. Именно через этот порт доставляли бронзу в Европу в старину, и в древнем Риме этот сплав называли «эс бриндиси» – медь из Бриндизи.

В честь изобретателя

Латинское слово frictio означает «трение». Отсюда название антифрикционных материалов, то есть материалов «против трения». Они мало истираются, отличаются мягкостью и тягучестью. Главное их применение – изготовление подшипниковых вкладышей. Первый антифрикционный сплав на основе олова и свинца предложил в 1839 г. инженер Баббит. Отсюда название большой и очень важной группы антифрикционных сплавов – баббитов.

Жесть для консервирования

Способ длительного сохранения пищевых продуктов консервированием в банках из белой жести, покрытой оловом, первым предложил французский повар Ф. Аппер в 1809 г.

Со дна океана

В 1976 г. начало работать необычное предприятие, которое сокращенно называют РЭП. Расшифровывается это так: разведочно-эксплуатационное предприятие. Оно размещается в основном на кораблях. За Полярным кругом, в море Лаптевых, в районе Ванькиной губы РЭП добывает с морского дна оловоносный песок. Здесь же, на борту одного из судов, работает обогатительная фабрика.

Мировое производство

По американским данным, мировое производство олова в 1975 г. составляло 174...180 тыс. т.

Олово – это легкий металл с атомным номером 50, который находится в 14-й группе периодической системы элементов. Этот элемент был известен еще в древности и считался одним из самых редких и дорогих металлов, поэтому изделия из олова могли позволить себе самые богатые жители Римской Империи и Древней Греции. Из олова изготавливали специальную бронзу, которой пользовались еще в третьем тысячелетии до нашей эры. Тогда бронза была самым прочным и популярным сплавом, а олово служило одной из примесей и использовалось более двух тысяч лет.

На латыни этот металл называли словом «stan­num», что означает стойкость и прочность, однако таким названием ранее обозначался сплав свинца и серебра. Только в IV веке этим словом начали называть само олово. Само же название «олово» имеет множество версий происхождения. В Древнем Риме сосуды для вина делались из свинца. Можно предположить, что оловом называли материал , из которого изготавливали сосуды для хранения напитка оловина, употребляемого древними славянами.

В природе этот металл встречается редко, по распространенности в земной коре олово занимает всего лишь 47-е место и добывается из касситерита, так называемого оловянного камня , который содержит около 80 процентов этого металла.

Касситерит

Применение в промышленности

Так как олово является нетоксичным и весьма прочным металлом, он применяется в сплавах с другими металлами. По большей части его используют для изготовления белой жести, которая применяется в производстве банок для консервов, припоев в электронике, а также для изготовления бронзы.

Физические свойства олова

Этот элемент представляет собой металл белого цвета с серебристым отблеском.


Серое и белое олово

Если нагреть олово, можно услышать потрескивание. Этот звук обусловлен трением кристалликов друг о друга. Также характерный хруст появится, если кусок олова просто согнуть.

Олово весьма пластично и ковко. В классических условиях этот элемент существует в виде «белого олова», которое может модифицироваться в зависимости от температуры. Например, на морозе белое олово превратится в серое и будет иметь структуру, схожую со структурой алмаза. Кстати, серое олово очень хрупкое и буквально на глазах рассыпается в порошок. В связи с этим в истории есть терминология «оловянная чума».

Раньше люди не знали о таком свойстве олова, поэтому из него изготавливались пуговицы и кружки для солдат, а также прочие полезные вещи, которые после недолгого времени на морозе превращались в порошок. Некоторые историки считают, что именно из-за этого свойства олова снизилась боеспособность армии Наполеона.

Получение олова

Основным способом получения олова является восстановление металла из руды, содержащей оксид олова(IV) с помощью угля, алюминия или .

SnO₂ + C = Sn + CO₂

Особо чистое олово получают электрохимическим рафинированием или методом зонной плавки.

Химические свойства олова

При комнатной температуре олово довольно устойчиво к воздействию воздуха или . Это объясняется тем, что на поверхности металла возникает тонкая оксидная пленка.

На воздухе олово начинает окисляться только при температуре свыше 150 °С:

Sn + O₂ → SnO₂


Волокна SnO₂ в оптическом микроскопе

Если олово нагреть, этот элемент будет реагировать с большинством неметаллов, образуя соединения со степенью окисления +4 (она более характерна для этого элемента):

Sn + 2Cl₂ → SnCl₄

Взаимодействие олова и концентрированной соляной кислоты протекает довольно медленно:

Sn + 4HCl → H₂ + H₂

С концентрированной серной кислотой олово реагирует очень медленно, тогда как с разбавленной в реакцию не вступает вообще.

Очень интересна реакция олова с азотной кислотой, которая зависит от концентрации раствора. Реакция протекает с образованием оловянной кислоты, H₂S­nO₃, которая представляет собой белый аморфный порошок:

3Sn + 4H­NO₃ + nH₂O = 3H₂S­nO₃·nH₂O + 4NO

Если же смешать с разбавленной азотной кислотой, этот элемент будет проявлять металлические свойства с образованием нитрата олова:

4Sn + 10H­NO₃ = 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O

Нагретое олово нагреть может реагировать со щелочами с выделением водорода:

Sn + 2KOH + 4H₂O = K₂ + 2H₂

вы найдете безопасные и очень красивые эксперименты с оловом.

Степени окисления олова

В простом состоянии степень окисления олова равняется нулю. Также Sn может иметь степень окисления +2: оксид олова(II) SnO, SnCl₂, гидроксид олова(II) Sn(OH)₂. Степень окисления +4 наиболее характерна для оксида олова(IV) SnO₂, галогенидах(IV), например хлорид SnCl₄, сульфид олова(IV) SnS₂, нитрид олова(IV) Sn₃N₄.